解析
& \& &运算,计算的数越多,结果不变或变小
对于一个区间 [ l , r ] [l,r] [l,r] ,如果其与运算的结果为 0 0 0 ,则在其右侧添加数字时,其结果依然为 0 0 0
可以预处理出每个位置的每一个二进制位,然后前缀和累计
然后遍历区间,固定左端点 l l l,在 [ l , n ] [l,n] [l,n]二分右端点 r r r 为第一个使 [ l , r ] [l,r] [l,r] 与运算结果为 0 0 0 的位置,然后 a n s ans ans 累计 n − l + 1 n-l+1 n−l+1 作为答案
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define inf 0x3f3f3f3f
const int N=1e6+5;
int n,m;
int a[N],sum[N][32];
bool check(int x,int y){
for(int i=0;i<32;i++){
//如果这个区间的每一位二进制位的所有数都为 1,说明其与运算后为 1
if(sum[y][i]-sum[x-1][i]==y-x+1) return false;
}
return true;
}
void solve(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
}
for(int i=0;i<32;i++){
for(int j=1;j<=n;j++){
sum[j][i]=sum[j-1][i];
if((a[j]>>i)&1) sum[j][i]++;
}
}
int ans=0;
for(int i=1;i<=n;i++){
int l=i,r=n+1; //此处 r=n+1,是因为我们累计答案为 ans+=n-l+1
while(l<r){ //所以当二分到最右侧时,ans需要累计 0
int mid=l+r>>1;
if(check(i,mid)) r=mid;
else l=mid+1;
}
ans+=n-l+1;
}
cout<<ans;
}
signed main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int t=1;
// cin>>t;
while(t--) solve();
return 0;
}