Pandas库基础知识

Pandas库


Pandas是Python第三方库,提供高性能易用数据类型和分析工具

import pandas as pd

Pandas基于NumPy实现,常于NumPy和Matplotlib一同使用

两个数据类型:Series, DataFrame,基于上述数据类型的各类操作,基本操作、运算操作、特征类操作、关联类操作

NumPyPandas
基础数据类型扩展数据类型
关注数据的结构表达关注数据的应用表达
维度:数据间的关系数据与索引间关系
Pandas的Series类型

Series类型由一组数据及与之相关的数据索引组成

>>> import pandas as pd
>>> a = pd.Series([9, 8, 7, 6])
>>> a
0    9
1    8
2    7
3    6
dtype: int64
>>> b = pd.Series([9, 8, 7, 6], index = ['a','b','c','d'])
>>> b
a    9
b    8
c    7
d    6
dtype: int64

Series类型可以由如下类型创建:

  • Python列表,index与列表元素个数一致
  • 标量值,index表达Series类型的尺寸
  • Python字典,键值对中的“键”是索引,index从字典中进行选择操作
  • ndarray,索引和数据都可以通过ndarray类型创建
  • 其他函数,range()函数等
从标量值创建
>>> s = pd.Series(25, index = ['a','b','c'])  #不能省略index=
>>> s
a    25
b    25
c    25
dtype: int64
从字典类型创建
>>> d = pd.Series({'a':9, 'b':8, 'c':7})
>>> d
a    9
b    8
c    7
dtype: int64
从ndarray类型创建
>>> import pandas as pd
>>> import numpy as pd
>>> n = pd.Series(np.arange(5),index = np.arange(9,4,-1))
>>> n
9    0
8    1
7    2
6    3
5    4
dtype: int32

Series类型的基本操作

Series类型包括index和value两部分

>>> import pandas as pd
>>> b = pd.Series([9, 8, 7, 6],['a', 'b', 'c', 'd'])
>>> b
a    9
b    8
c    7
d    6
dtype: int64
>>> b.index  #获得索引
Index(['a', 'b', 'c', 'd'], dtype='object')
>>> b.values #获得数据
array([9, 8, 7, 6], dtype=int64)
>>> b['b']   #自动索引和自定义索引并存
8
>>> b[1]
8
>>> b[['c', 'd', 0]]   #但不能混用
c    7.0
d    6.0
0    NaN
dtype: float64

Series类型的操作类似ndarray类型
- 索引方法相同,采用[]
- NumPy中运算和操作可用于Series类型
- 可以通过自定义索引的列表进行切片
- 可以通过自动索引进行切片,如果存在自定义索引,则一同被切片

>>> import pandas as pd
>>> b = pd.Series([9, 8, 7, 6],['a', 'b', 'c', 'd'])
>>> b
a    9
b    8
c    7
d    6
dtype: int64
>>> b[:3]
a    9
b    8
c    7
dtype: int64
>>> b[b > b.median()]
a    9
b    8
dtype: int64

Series类型的操作类似Python字典类型
- 通过自定义索引访问
- 保留字in操作
- 使用.get()方法

>>> 'c' in b
True
>>> 0 in b
False

Series类型对齐操作

Series类型在运算中会自动对齐不同索引的数据

>>> import pandas as pd
>>> b = pd.Series([9, 8, 7, 6],['a', 'b', 'c', 'd'])
>>> a = pd.Series([1, 2, 3],['c', 'd', 'e'])
>>> a + b
a    NaN
b    NaN
c    8.0
d    8.0
e    NaN
dtype: float64

Series类型的name属性

Series对象和索引都可以有一个名字,存储在属性.name中

>>> b = pd.Series([9, 8, 7, 6],['a', 'b', 'c', 'd'])
>>> b.name = 'Series对象'
>>> b.index.name = '索引列'
>>> b
索引列
a    9
b    8
c    7
d    6
Name: Series对象, dtype: int64
DataFrame类型
  • DataFrame类型由共用相同索引的一组列组成
  • DataFrame是一个表格型的数据类型,每列值类型可以不同
  • DataFrame既有行索引(index),也有列索引(column)
  • DataFrame常用语表达二维数据,但也可以表达多维数据
  • DataFrame是二维带‘标签’的数组

从二维ndarray对象创建

import pandas as pd

import numpy as np

d = pd.DataFrame(np.arange(10).reshape(2,5))

d
Out[4]: 
   0  1  2  3  4
0  0  1  2  3  4
1  5  6  7  8  9

从一维ndarray对象字典创建

dt = {'one': pd.Series([1, 2, 3],index=['a','b','c']),
      'two': pd.Series([9, 8, 7 ,6], index = ['a', 'b', 'c', 'd'])}

d = pd.DataFrame(dt)

d
Out[8]: 
   one  two
a  1.0    9
b  2.0    8
c  3.0    7
d  NaN    6

从列表类型的字典创建

dl = {'one': [1,2,3,4], 'two': [9,8,7,6]}

d = pd.DataFrame(dl, inde = ['a','b','c','d'])

d = pd.DataFrame(dl, index = ['a','b','c','d'])

d
Out[12]: 
   one  two
a    1    9
b    2    8
c    3    7
d    4    6
Pandas库的数据类型操作

如何改变Series和DataFrame对象

增加或重排:重新索引

重新索引:.reindex()能够改变或重排Series和DataFrame索引

.reindex的参数说明
index,columns新的行列自定义索引
fill_value重新索引中,用于填充缺失位置的值
method填充方法,ffill当前值向前填充,bfill向后填充
limit最大填充量
copy默认True,生成新的对象,False时,新旧相等不复制

索引类型的常用方法

方法说明
.append(idx)连接另一个Index对象,产生新的Index对象
.diff(idx)计算差集,产生新的Index对象
.itersection(idx)计算交集
.union(idx)计算并集
.delete(loc)删除loc位置处的元素
.insert(loc,e)在loc位置增加一个元素e

删除指定索引对象:.drop()能够删除Series和DataFrame指定行或列索引

>>> a = pd.Series([9,8,7,6], index = ['a', 'b', 'c', 'd'])
>>> a
a    9
b    8
c    7
d    6
dtype: int64
>>> a.drop(['b', 'c'])
a    9
d    6
dtype: int64
Pandas库的数据类型运算

算术运算法则:

  • 根据行列索引,补齐后运算,运算默认产生浮点数
  • 补齐时缺项填充NaN(空值)
  • 二维和一维、一维和零维空间广播运算
  • 采用+ - * / 符号进行的二维运算产生新的对象
a = pd.DataFrame(np.arange(12).reshape(3,4))

a
Out[14]: 
   0  1   2   3
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

b = pd.DataFrame(np.arange(20).reshape(4,5))

b
Out[16]: 
    0   1   2   3   4
0   0   1   2   3   4
1   5   6   7   8   9
2  10  11  12  13  14
3  15  16  17  18  19

a + b
Out[17]: 
      0     1     2     3   4
0   0.0   2.0   4.0   6.0 NaN
1   9.0  11.0  13.0  15.0 NaN
2  18.0  20.0  22.0  24.0 NaN
3   NaN   NaN   NaN   NaN NaN

a * b
Out[18]: 
      0     1      2      3   4
0   0.0   1.0    4.0    9.0 NaN
1  20.0  30.0   42.0   56.0 NaN
2  80.0  99.0  120.0  143.0 NaN
3   NaN   NaN    NaN    NaN NaN

方法形式的运算

方法说明
.add(d, **argws)类型间加法运算,可选参数
.sub(d, **argws)类型间减法运算,可选参数
.mul(d, **argws)类型间乘法运算,可选参数
.div(d, **argws)类型间除法运算,可选参数
a = pd.DataFrame(np.arange(12).reshape(3,4))

a
Out[14]: 
   0  1   2   3
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11
b = pd.DataFrame(np.arange(20).reshape(4,5))

b
Out[16]: 
    0   1   2   3   4
0   0   1   2   3   4
1   5   6   7   8   9
2  10  11  12  13  14
3  15  16  17  18  19
b.add(a, fill_value = 100)
Out[19]: 
       0      1      2      3      4
0    0.0    2.0    4.0    6.0  104.0
1    9.0   11.0   13.0   15.0  109.0
2   18.0   20.0   22.0   24.0  114.0
3  115.0  116.0  117.0  118.0  119.0
a.mul(b, fill_value = 0)
Out[20]: 
      0     1      2      3    4
0   0.0   1.0    4.0    9.0  0.0
1  20.0  30.0   42.0   56.0  0.0
2  80.0  99.0  120.0  143.0  0.0
3   0.0   0.0    0.0    0.0  0.0
c = pd.Series(np.arange(4))

c
Out[23]: 
0    0
1    1
2    2
3    3
dtype: int32

b.sub(c, axis = 0)
Out[22]: 
    0   1   2   3   4
0   0   1   2   3   4
1   4   5   6   7   8
2   8   9  10  11  12
3  12  13  14  15  16

比较运算法则

  • 比较运算只能比较相同索引的元素,不能进行补齐
  • 二维和一维、一维和零维间为广播运算
  • 采用 > < >= <= == !=等符号进行的二元运算产生布尔对象
a = pd.DataFrame(np.arange(12).reshape(3,4))

a
Out[14]: 
   0  1   2   3
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

d = pd.DataFrame(np.arange(12, 0, -1).reshape(3,4))

d
Out[25]: 
    0   1   2  3
0  12  11  10  9
1   8   7   6  5
2   4   3   2  1

a > d
Out[26]: 
       0      1      2      3
0  False  False  False  False
1  False  False  False   True
2   True   True   True   True
数据的排序
  • 基本统计(含排序)
  • 分布/累计统计
  • 数据特征、相关性、周期性
  • 数据挖掘(形成知识)
Pandas库的数据排序

.sort_index()方法在指定轴上根据索引进行排序,默认升序

sort,index(axis = 0, ascending = True)

import pandas as pd

import numpy as np

b = pd.DataFrame(np.arange(20).reshape(4,5),index = ['c','a','d','b'])

b
Out[4]: 
    0   1   2   3   4
c   0   1   2   3   4
a   5   6   7   8   9
d  10  11  12  13  14
b  15  16  17  18  19

b.sort_index()
Out[5]: 
    0   1   2   3   4
a   5   6   7   8   9
b  15  16  17  18  19
c   0   1   2   3   4
d  10  11  12  13  14

b.sort_index(ascending = False)
Out[7]: 
    0   1   2   3   4
d  10  11  12  13  14
c   0   1   2   3   4
b  15  16  17  18  19
a   5   6   7   8   9

b.sort_index(axis = 1,ascending = False)
Out[8]: 
    4   3   2   1   0
c   4   3   2   1   0
a   9   8   7   6   5
d  14  13  12  11  10
b  19  18  17  16  15

.sort_values()方法在指定轴上根据数值进行排序,默认升序

Series.sort_values(axis = 0, ascending = True)

DataFrame.sort_values(by, axis = 0, ascending = True) #by:axis轴上的某个索引或索引列表

b = pd.DataFrame(np.arange(20).reshape(4,5),index = ['c','a','d','b'])

b
Out[4]: 
    0   1   2   3   4
c   0   1   2   3   4
a   5   6   7   8   9
d  10  11  12  13  14
b  15  16  17  18  19

c = b.sort_values(2, ascending = False)

c
Out[10]: 
    0   1   2   3   4
b  15  16  17  18  19
d  10  11  12  13  14
a   5   6   7   8   9
c   0   1   2   3   4

c = c.sort_values('a', axis = 1,ascending = False)

c
Out[13]: 
    4   3   2   1   0
b  19  18  17  16  15
d  14  13  12  11  10
a   9   8   7   6   5
c   4   3   2   1   0
数据的基本统计分析

适用于Series和DataFrame类型

方法说明
.sum()计算数据的总和,按0轴计算,下同
.count()非NaN值的数量
.mean() .median()计算数据的算术平均值、算术中位数
.var() .std()计算数据的方差、标准差
.min() .max()计算数据的最小值、最大值
.describe()针对0轴(各列)的统计汇总
a = pd.Series([9, 8, 7, 6], index = ['a','b','c','d'])

a
Out[15]: 
a    9
b    8
c    7
d    6
dtype: int64

a.describe()
Out[16]: 
count    4.000000
mean     7.500000
std      1.290994
min      6.000000
25%      6.750000
50%      7.500000
75%      8.250000
max      9.000000
dtype: float64

b = pd.DataFrame(np.arange(20).reshape(4,5),index = ['c','a','d','b'])

b.describe()
Out[17]: 
               0          1          2          3          4
count   4.000000   4.000000   4.000000   4.000000   4.000000
mean    7.500000   8.500000   9.500000  10.500000  11.500000
std     6.454972   6.454972   6.454972   6.454972   6.454972
min     0.000000   1.000000   2.000000   3.000000   4.000000
25%     3.750000   4.750000   5.750000   6.750000   7.750000
50%     7.500000   8.500000   9.500000  10.500000  11.500000
75%    11.250000  12.250000  13.250000  14.250000  15.250000
max    15.000000  16.000000  17.000000  18.000000  19.000000

b.describe()[2]
Out[19]: 
count     4.000000
mean      9.500000
std       6.454972
min       2.000000
25%       5.750000
50%       9.500000
75%      13.250000
max      17.000000
Name: 2, dtype: float64

适用于Series类型

方法说明
.argmin() .argmax()计算数据最大值、最小值所在位置的索引位置(自动索引)
.idxmin() .idxmax()计算数据最大值、最小值所在位置的索引(自定义索引)
数据的累计统计分析

适用于Series和DataFrame类型

方法函数
.cumsum()依次给出前1、2、…、n个数的和
.cumprod()依次给出前1、2、…、n个数的积
.cummax()依次给出前1、2、…、n个数的最大值
.cummin()依次给出前1、2、…、n个数的最小值
b = pd.DataFrame(np.arange(20).reshape(4,5),index = ['c','a','d','b'])

b
Out[4]: 
    0   1   2   3   4
c   0   1   2   3   4
a   5   6   7   8   9
d  10  11  12  13  14
b  15  16  17  18  19

b.cumsum()
Out[20]: 
    0   1   2   3   4
c   0   1   2   3   4
a   5   7   9  11  13
d  15  18  21  24  27
b  30  34  38  42  46

b.cumprod()
Out[21]: 
   0     1     2     3     4
c  0     1     2     3     4
a  0     6    14    24    36
d  0    66   168   312   504
b  0  1056  2856  5616  9576

适用于Series和DataFrame类型,滚动计算(窗口计算)

方法说明
.rolling(w).sum()依次计算相邻w个元素的和
.rolling(w).mean()依次计算相邻w个元素的算术平均值
.rolling(w).var()依次计算相邻w个元素的方差
.rolling(w).std()依次计算相邻w个元素的标准差
.rolling(w).min() .max()依次计算相邻w个元素的最小值和最大值
b = pd.DataFrame(np.arange(20).reshape(4,5),index = ['c','a','d','b'])

b
Out[4]: 
    0   1   2   3   4
c   0   1   2   3   4
a   5   6   7   8   9
d  10  11  12  13  14
b  15  16  17  18  19

b.rolling(2).sum()
Out[22]: 
      0     1     2     3     4
c   NaN   NaN   NaN   NaN   NaN
a   5.0   7.0   9.0  11.0  13.0
d  15.0  17.0  19.0  21.0  23.0
b  25.0  27.0  29.0  31.0  33.0
数据的相关分析
  • X增大,Y增大,两个变量正相关,协方差 > 0
  • X增大,Y减小,两个变量负相关,协方差 < 0
  • X增大,Y无视,两个变量不相关,协方差 = 0

适用于Series和DataFrame类型

方法函数
.cov()计算协方差矩阵
.corr()计算相关系数矩阵,Pearson、Spearman、Kendall系数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值