Pandas库
Pandas是Python第三方库,提供高性能易用数据类型和分析工具
import pandas as pd
Pandas基于NumPy实现,常于NumPy和Matplotlib一同使用
两个数据类型:Series, DataFrame,基于上述数据类型的各类操作,基本操作、运算操作、特征类操作、关联类操作
NumPy | Pandas |
---|---|
基础数据类型 | 扩展数据类型 |
关注数据的结构表达 | 关注数据的应用表达 |
维度:数据间的关系 | 数据与索引间关系 |
Pandas的Series类型
Series类型由一组数据及与之相关的数据索引组成
>>> import pandas as pd
>>> a = pd.Series([9, 8, 7, 6])
>>> a
0 9
1 8
2 7
3 6
dtype: int64
>>> b = pd.Series([9, 8, 7, 6], index = ['a','b','c','d'])
>>> b
a 9
b 8
c 7
d 6
dtype: int64
Series类型可以由如下类型创建:
- Python列表,index与列表元素个数一致
- 标量值,index表达Series类型的尺寸
- Python字典,键值对中的“键”是索引,index从字典中进行选择操作
- ndarray,索引和数据都可以通过ndarray类型创建
- 其他函数,range()函数等
从标量值创建
>>> s = pd.Series(25, index = ['a','b','c']) #不能省略index=
>>> s
a 25
b 25
c 25
dtype: int64
从字典类型创建
>>> d = pd.Series({'a':9, 'b':8, 'c':7})
>>> d
a 9
b 8
c 7
dtype: int64
从ndarray类型创建
>>> import pandas as pd
>>> import numpy as pd
>>> n = pd.Series(np.arange(5),index = np.arange(9,4,-1))
>>> n
9 0
8 1
7 2
6 3
5 4
dtype: int32
Series类型的基本操作
Series类型包括index和value两部分
>>> import pandas as pd
>>> b = pd.Series([9, 8, 7, 6],['a', 'b', 'c', 'd'])
>>> b
a 9
b 8
c 7
d 6
dtype: int64
>>> b.index #获得索引
Index(['a', 'b', 'c', 'd'], dtype='object')
>>> b.values #获得数据
array([9, 8, 7, 6], dtype=int64)
>>> b['b'] #自动索引和自定义索引并存
8
>>> b[1]
8
>>> b[['c', 'd', 0]] #但不能混用
c 7.0
d 6.0
0 NaN
dtype: float64
Series类型的操作类似ndarray类型
- 索引方法相同,采用[]
- NumPy中运算和操作可用于Series类型
- 可以通过自定义索引的列表进行切片
- 可以通过自动索引进行切片,如果存在自定义索引,则一同被切片
>>> import pandas as pd
>>> b = pd.Series([9, 8, 7, 6],['a', 'b', 'c', 'd'])
>>> b
a 9
b 8
c 7
d 6
dtype: int64
>>> b[:3]
a 9
b 8
c 7
dtype: int64
>>> b[b > b.median()]
a 9
b 8
dtype: int64
Series类型的操作类似Python字典类型
- 通过自定义索引访问
- 保留字in操作
- 使用.get()方法
>>> 'c' in b
True
>>> 0 in b
False
Series类型对齐操作
Series类型在运算中会自动对齐不同索引的数据
>>> import pandas as pd
>>> b = pd.Series([9, 8, 7, 6],['a', 'b', 'c', 'd'])
>>> a = pd.Series([1, 2, 3],['c', 'd', 'e'])
>>> a + b
a NaN
b NaN
c 8.0
d 8.0
e NaN
dtype: float64
Series类型的name属性
Series对象和索引都可以有一个名字,存储在属性.name中
>>> b = pd.Series([9, 8, 7, 6],['a', 'b', 'c', 'd'])
>>> b.name = 'Series对象'
>>> b.index.name = '索引列'
>>> b
索引列
a 9
b 8
c 7
d 6
Name: Series对象, dtype: int64
DataFrame类型
- DataFrame类型由共用相同索引的一组列组成
- DataFrame是一个表格型的数据类型,每列值类型可以不同
- DataFrame既有行索引(index),也有列索引(column)
- DataFrame常用语表达二维数据,但也可以表达多维数据
- DataFrame是二维带‘标签’的数组
从二维ndarray对象创建
import pandas as pd
import numpy as np
d = pd.DataFrame(np.arange(10).reshape(2,5))
d
Out[4]:
0 1 2 3 4
0 0 1 2 3 4
1 5 6 7 8 9
从一维ndarray对象字典创建
dt = {'one': pd.Series([1, 2, 3],index=['a','b','c']),
'two': pd.Series([9, 8, 7 ,6], index = ['a', 'b', 'c', 'd'])}
d = pd.DataFrame(dt)
d
Out[8]:
one two
a 1.0 9
b 2.0 8
c 3.0 7
d NaN 6
从列表类型的字典创建
dl = {'one': [1,2,3,4], 'two': [9,8,7,6]}
d = pd.DataFrame(dl, inde = ['a','b','c','d'])
d = pd.DataFrame(dl, index = ['a','b','c','d'])
d
Out[12]:
one two
a 1 9
b 2 8
c 3 7
d 4 6
Pandas库的数据类型操作
如何改变Series和DataFrame对象
增加或重排:重新索引
重新索引:.reindex()能够改变或重排Series和DataFrame索引
.reindex的参数 | 说明 |
---|---|
index,columns | 新的行列自定义索引 |
fill_value | 重新索引中,用于填充缺失位置的值 |
method | 填充方法,ffill当前值向前填充,bfill向后填充 |
limit | 最大填充量 |
copy | 默认True,生成新的对象,False时,新旧相等不复制 |
索引类型的常用方法
方法 | 说明 |
---|---|
.append(idx) | 连接另一个Index对象,产生新的Index对象 |
.diff(idx) | 计算差集,产生新的Index对象 |
.itersection(idx) | 计算交集 |
.union(idx) | 计算并集 |
.delete(loc) | 删除loc位置处的元素 |
.insert(loc,e) | 在loc位置增加一个元素e |
删除指定索引对象:.drop()能够删除Series和DataFrame指定行或列索引
>>> a = pd.Series([9,8,7,6], index = ['a', 'b', 'c', 'd'])
>>> a
a 9
b 8
c 7
d 6
dtype: int64
>>> a.drop(['b', 'c'])
a 9
d 6
dtype: int64
Pandas库的数据类型运算
算术运算法则:
- 根据行列索引,补齐后运算,运算默认产生浮点数
- 补齐时缺项填充NaN(空值)
- 二维和一维、一维和零维空间广播运算
- 采用+ - * / 符号进行的二维运算产生新的对象
a = pd.DataFrame(np.arange(12).reshape(3,4))
a
Out[14]:
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
b = pd.DataFrame(np.arange(20).reshape(4,5))
b
Out[16]:
0 1 2 3 4
0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19
a + b
Out[17]:
0 1 2 3 4
0 0.0 2.0 4.0 6.0 NaN
1 9.0 11.0 13.0 15.0 NaN
2 18.0 20.0 22.0 24.0 NaN
3 NaN NaN NaN NaN NaN
a * b
Out[18]:
0 1 2 3 4
0 0.0 1.0 4.0 9.0 NaN
1 20.0 30.0 42.0 56.0 NaN
2 80.0 99.0 120.0 143.0 NaN
3 NaN NaN NaN NaN NaN
方法形式的运算
方法 | 说明 |
---|---|
.add(d, **argws) | 类型间加法运算,可选参数 |
.sub(d, **argws) | 类型间减法运算,可选参数 |
.mul(d, **argws) | 类型间乘法运算,可选参数 |
.div(d, **argws) | 类型间除法运算,可选参数 |
a = pd.DataFrame(np.arange(12).reshape(3,4))
a
Out[14]:
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
b = pd.DataFrame(np.arange(20).reshape(4,5))
b
Out[16]:
0 1 2 3 4
0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19
b.add(a, fill_value = 100)
Out[19]:
0 1 2 3 4
0 0.0 2.0 4.0 6.0 104.0
1 9.0 11.0 13.0 15.0 109.0
2 18.0 20.0 22.0 24.0 114.0
3 115.0 116.0 117.0 118.0 119.0
a.mul(b, fill_value = 0)
Out[20]:
0 1 2 3 4
0 0.0 1.0 4.0 9.0 0.0
1 20.0 30.0 42.0 56.0 0.0
2 80.0 99.0 120.0 143.0 0.0
3 0.0 0.0 0.0 0.0 0.0
c = pd.Series(np.arange(4))
c
Out[23]:
0 0
1 1
2 2
3 3
dtype: int32
b.sub(c, axis = 0)
Out[22]:
0 1 2 3 4
0 0 1 2 3 4
1 4 5 6 7 8
2 8 9 10 11 12
3 12 13 14 15 16
比较运算法则
- 比较运算只能比较相同索引的元素,不能进行补齐
- 二维和一维、一维和零维间为广播运算
- 采用 > < >= <= == !=等符号进行的二元运算产生布尔对象
a = pd.DataFrame(np.arange(12).reshape(3,4))
a
Out[14]:
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
d = pd.DataFrame(np.arange(12, 0, -1).reshape(3,4))
d
Out[25]:
0 1 2 3
0 12 11 10 9
1 8 7 6 5
2 4 3 2 1
a > d
Out[26]:
0 1 2 3
0 False False False False
1 False False False True
2 True True True True
数据的排序
- 基本统计(含排序)
- 分布/累计统计
- 数据特征、相关性、周期性
- 数据挖掘(形成知识)
Pandas库的数据排序
.sort_index()方法在指定轴上根据索引进行排序,默认升序
sort,index(axis = 0, ascending = True)
import pandas as pd
import numpy as np
b = pd.DataFrame(np.arange(20).reshape(4,5),index = ['c','a','d','b'])
b
Out[4]:
0 1 2 3 4
c 0 1 2 3 4
a 5 6 7 8 9
d 10 11 12 13 14
b 15 16 17 18 19
b.sort_index()
Out[5]:
0 1 2 3 4
a 5 6 7 8 9
b 15 16 17 18 19
c 0 1 2 3 4
d 10 11 12 13 14
b.sort_index(ascending = False)
Out[7]:
0 1 2 3 4
d 10 11 12 13 14
c 0 1 2 3 4
b 15 16 17 18 19
a 5 6 7 8 9
b.sort_index(axis = 1,ascending = False)
Out[8]:
4 3 2 1 0
c 4 3 2 1 0
a 9 8 7 6 5
d 14 13 12 11 10
b 19 18 17 16 15
.sort_values()方法在指定轴上根据数值进行排序,默认升序
Series.sort_values(axis = 0, ascending = True)
DataFrame.sort_values(by, axis = 0, ascending = True) #by:axis轴上的某个索引或索引列表
b = pd.DataFrame(np.arange(20).reshape(4,5),index = ['c','a','d','b'])
b
Out[4]:
0 1 2 3 4
c 0 1 2 3 4
a 5 6 7 8 9
d 10 11 12 13 14
b 15 16 17 18 19
c = b.sort_values(2, ascending = False)
c
Out[10]:
0 1 2 3 4
b 15 16 17 18 19
d 10 11 12 13 14
a 5 6 7 8 9
c 0 1 2 3 4
c = c.sort_values('a', axis = 1,ascending = False)
c
Out[13]:
4 3 2 1 0
b 19 18 17 16 15
d 14 13 12 11 10
a 9 8 7 6 5
c 4 3 2 1 0
数据的基本统计分析
适用于Series和DataFrame类型
方法 | 说明 |
---|---|
.sum() | 计算数据的总和,按0轴计算,下同 |
.count() | 非NaN值的数量 |
.mean() .median() | 计算数据的算术平均值、算术中位数 |
.var() .std() | 计算数据的方差、标准差 |
.min() .max() | 计算数据的最小值、最大值 |
.describe() | 针对0轴(各列)的统计汇总 |
a = pd.Series([9, 8, 7, 6], index = ['a','b','c','d'])
a
Out[15]:
a 9
b 8
c 7
d 6
dtype: int64
a.describe()
Out[16]:
count 4.000000
mean 7.500000
std 1.290994
min 6.000000
25% 6.750000
50% 7.500000
75% 8.250000
max 9.000000
dtype: float64
b = pd.DataFrame(np.arange(20).reshape(4,5),index = ['c','a','d','b'])
b.describe()
Out[17]:
0 1 2 3 4
count 4.000000 4.000000 4.000000 4.000000 4.000000
mean 7.500000 8.500000 9.500000 10.500000 11.500000
std 6.454972 6.454972 6.454972 6.454972 6.454972
min 0.000000 1.000000 2.000000 3.000000 4.000000
25% 3.750000 4.750000 5.750000 6.750000 7.750000
50% 7.500000 8.500000 9.500000 10.500000 11.500000
75% 11.250000 12.250000 13.250000 14.250000 15.250000
max 15.000000 16.000000 17.000000 18.000000 19.000000
b.describe()[2]
Out[19]:
count 4.000000
mean 9.500000
std 6.454972
min 2.000000
25% 5.750000
50% 9.500000
75% 13.250000
max 17.000000
Name: 2, dtype: float64
适用于Series类型
方法 | 说明 |
---|---|
.argmin() .argmax() | 计算数据最大值、最小值所在位置的索引位置(自动索引) |
.idxmin() .idxmax() | 计算数据最大值、最小值所在位置的索引(自定义索引) |
数据的累计统计分析
适用于Series和DataFrame类型
方法 | 函数 |
---|---|
.cumsum() | 依次给出前1、2、…、n个数的和 |
.cumprod() | 依次给出前1、2、…、n个数的积 |
.cummax() | 依次给出前1、2、…、n个数的最大值 |
.cummin() | 依次给出前1、2、…、n个数的最小值 |
b = pd.DataFrame(np.arange(20).reshape(4,5),index = ['c','a','d','b'])
b
Out[4]:
0 1 2 3 4
c 0 1 2 3 4
a 5 6 7 8 9
d 10 11 12 13 14
b 15 16 17 18 19
b.cumsum()
Out[20]:
0 1 2 3 4
c 0 1 2 3 4
a 5 7 9 11 13
d 15 18 21 24 27
b 30 34 38 42 46
b.cumprod()
Out[21]:
0 1 2 3 4
c 0 1 2 3 4
a 0 6 14 24 36
d 0 66 168 312 504
b 0 1056 2856 5616 9576
适用于Series和DataFrame类型,滚动计算(窗口计算)
方法 | 说明 |
---|---|
.rolling(w).sum() | 依次计算相邻w个元素的和 |
.rolling(w).mean() | 依次计算相邻w个元素的算术平均值 |
.rolling(w).var() | 依次计算相邻w个元素的方差 |
.rolling(w).std() | 依次计算相邻w个元素的标准差 |
.rolling(w).min() .max() | 依次计算相邻w个元素的最小值和最大值 |
b = pd.DataFrame(np.arange(20).reshape(4,5),index = ['c','a','d','b'])
b
Out[4]:
0 1 2 3 4
c 0 1 2 3 4
a 5 6 7 8 9
d 10 11 12 13 14
b 15 16 17 18 19
b.rolling(2).sum()
Out[22]:
0 1 2 3 4
c NaN NaN NaN NaN NaN
a 5.0 7.0 9.0 11.0 13.0
d 15.0 17.0 19.0 21.0 23.0
b 25.0 27.0 29.0 31.0 33.0
数据的相关分析
- X增大,Y增大,两个变量正相关,协方差 > 0
- X增大,Y减小,两个变量负相关,协方差 < 0
- X增大,Y无视,两个变量不相关,协方差 = 0
适用于Series和DataFrame类型
方法 | 函数 |
---|---|
.cov() | 计算协方差矩阵 |
.corr() | 计算相关系数矩阵,Pearson、Spearman、Kendall系数 |