LeetCode面试150——122买卖股票的最佳时机II

题目难度:中等

默认优化目标:最小化平均时间复杂度。

Python默认为Python3。

目录

1 题目描述

2 题目解析

3 算法原理及题目解析

3.1 动态规划

3.2 贪心算法

参考文献


1 题目描述

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润

示例 1:

输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3。
最大总利润为 4 + 3 = 7 。

示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
最大总利润为 4 。

示例 3:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0。

提示:

  • 1 <= prices.length <= 3 * 104

  • 0 <= prices[i] <= 104

2 题目解析

这道题的输入和输出和LeetCode面试150——121买卖股票的最佳时机一样,输入是数组prices,输出是最大利润。只是约束条件变了,现在可以多次买入卖出,但在任何时候只能持有一股股票。

至于题目中“你也可以先购买,然后在 同一天 出售”,我理解是方便写代码,不用同一个功能的代码还要分段写。因为正常同一天卖利润是0,不会操作的。

暴力求解就不考虑了,走两次循环,把所有差值为正的加起来(也就是利润大于0)就行,时间复杂度为O(n^2)。

动态规划法依旧能用。

3 算法原理及题目解析

3.1 动态规划

我们需要确定初始状态以及状态转移方程。

股票只有两种状态,持有或者不持有。持有到不持有就是卖,不持有到持有就是买。我们可以定义一个两维数组dp[i][j],j=0或1。dp[i][0]表示第i天交易完手里没有股票的最大利润,dp[i][1]表示第i天交易完后手里持有一只股票的最大利润。

这样我们就可以得到状态转移方程


dp[i][0]=max(dp[i-1][0],dp[i-1][1]+price[i])\\ dp[i][1]=max(dp[i-1][1],dp[i-1][0]-price[i])

如果状态不发生变化,也就是继续持有或者继续不持有,dp[i][*]=dp[i-1][*]。如果发生变化,如果卖出,dp[i][0]=dp[i-1][1]+prices[i];如果买入,dp[i][1]=dp[i-1][0]-price[i]。两两之间取大即可,然后更新。

至于初始状态,dp[0][0]=0dp[0][1]=-prices[0]

进一步观察,每一天的状态只与前一天的状态有关,而与更早的状态无关。因此我们可以用两个变量取代原来的两个二维数组。

这样平均时间复杂度为O(n),平均空间复杂度为O(1)。

C++代码实现

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int dp0=0,dp1=-prices[0];
​
        for(int price:prices){
            dp0=max(dp0,dp1+price);
            dp1=max(dp1,dp0-price);
        }
​
        return dp0;
​
    }
};

Python代码实现

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        dp0,dp1=0,-prices[0]
​
        for price in prices:
            dp0=max(dp0,dp1+price)
            dp1=max(dp1,dp0-price)
        
        return dp0

3.2 贪心算法

该问题可以等价如下数学模型


\sum_{i=1}^{n-1}a[r_i]-a[l_i]
 

其中,a[l_i]表示在第l_i天买入,a[r_i]表示在第r_i天卖出。n为prices长度。

我们可以将a[r_i]-a[l_i]写成


a[r_i]-a[l_i]=(a[r_i]-a[r_{i-1}])+(a[r_{i-1}]-a[r_{i-2}])+\cdots+(a[l_i]-a[l_{i-1}]+(a[l_{i-1}]-a[l_{i-2}]))+\cdots
 

这样可以将问题转换为求对两天之间的买卖利润求和。当然,如果利润小于0,就不进行买卖操作。所以最终的公式如下


profit=\sum_{i=1}^{n-1}max(0,a[i]-a[i-1])
 

平均时间复杂度O(n),平均空间复杂度O(1)。

C++代码实现

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n=prices.size(),profit=0;
​
        for(int i=1;i<n;i++){
            profit+=max(0,prices[i]-prices[i-1]);
        }
​
        return profit;
​
    }
};

Python代码实现

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        n,profit=len(prices),0
​
        for i in range(1,n):
            profit+=max(0,prices[i]-prices[i-1])
​
        return profit

参考文献

力扣面试经典150题

力扣官方题解

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值