LeetCode221

博客探讨了一种使用动态规划解决寻找矩阵中最大正方形边长的问题。暴力解法的时间复杂度较高,作者提出了一个优化的dp解决方案,通过记录以每个单元格为右下角的最大正方形边长来避免边界问题。在转移过程中,选取三个方向中的最小值加1,以处理短板效应。代码示例展示了如何实现这一算法。
摘要由CSDN通过智能技术生成

最大正方形

在这里插入图片描述

分析

首先说一个暴力解法,首先做一个前缀和然后枚举这个这个正方行的边长。这个解法的复杂度大概是:
∑ i = 1 n ∑ j = 1 m ∑ k = 1 n 1 k = > m n ∗ l n n \sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{k=1}^{n}\frac{1}{k} => mn*lnn i=1nj=1mk=1nk1=>mnlnn
希望我没有算错。这个复杂度有点拉跨,其实考虑dp
dp[i][j]表示已(i,j)为右下角的最大边长,
d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j − 1 ] ) + 1 dp[i][j]=min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1])+1 dp[i][j]=min(dp[i1][j],dp[i][j1],dp[i1][j1])+1
首先是从这三个方向转移过来应该是没啥疑问,但是为啥去最小呢?其实这里的原因也很显而易见,就是短板效应。我懒得画图了,懂得都懂。
但是这里面有个比较恶心的就是边界问题,为了避免这个问题把数组加一维度

class Solution {
public:
    int dp[2000][2000];
    int maximalSquare(vector<vector<char>>& matrix) {
        if (!matrix.size())return 0;
        memset(dp, 0, sizeof(dp));
        int n = matrix.size();
        int m = matrix[0].size();
        int ans = 0;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (matrix[i][j] == '1') {
                    dp[i + 1][j + 1] = min({ dp[i][j],dp[i][j + 1],dp[i + 1][j] }) + 1;
                    ans = max(ans, dp[i + 1][j + 1]);
                }
            }
        }
        return ans * ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值