算法笔记——KMP算法

本文详细介绍了KMP算法,旨在解决字符串匹配问题。通过BF算法作为对比,阐述了KMP算法如何利用next数组提高匹配效率,并探讨了next数组的生成及其动态规划思想。还分享了算法的实现代码,帮助读者更好地理解和掌握KMP算法。
摘要由CSDN通过智能技术生成

原文:https://blog.hwg1998.com/blog/105

大概看了一下,距离上次记录学习笔记已经过去了将近100天了,这段时间忙着出差,写论文(到现在为止还没消息,难过。。)。今天开始继续坚持写笔记,这样才能最大效率的进步。

动态规划是我接触的第一个算法或者是思想吧,挺难的,学了快一星期了,还没熟练掌握技巧。学习的过程中接触到一些比较经典的算法,特此记录。

###1.0 Question
KMP算法是为了解决字符串匹配问题。具体来说,给出字符串S和P,检查P是否为S的子串,如果是的话,给出P在S中的坐标。
####1.1 BF
暴力算法(Brute-Force)就是简单的穷举,实现起来比较简单,就不多说了。

###2.0 How
####2.1 next 数组
为了加快匹配的效率,next数组出现了。P串假设为abcabd,相对应的next数组也定义为同等长度的整数数组。next[i]代表P[0]~P[i]的后缀集合与P[i]的前缀集合的交集的最大值(最长的那个的长度)。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PSuFFjCJ-1631635474674)(https://gitee.com/NCUHWG/img-set/raw/master/ccf/kmp_next.png “//图 kmp_next”)]
举个例子,当i=4的时候abcab的后缀集合为{a,ab,abc,abca},前缀集合为{b,ab,cab,bcab},交集为{ab},那么next[4]=len(ab)=2

####2.2 match
如果把模式串视为一把标尺,在主串上移动,那么 Brute-Force 就是每次失配之后只右移一位;改进算法则是每次失配之后,移很多位,跳过那些不可能匹配成功的位置。

如上图所示,每次失配,都将j的值设置为next[j-1],这样能减少重复的匹配工作。最大限度的利用了之前的结果。

###3.0 Implement
####3.1 generate next array
快速求next数组是KMP算法的核心,这里的求法非常的巧妙,蕴含了动态动画的思想,理解之余不禁拍手称妙。

  1. 状态 :dp[i]表示P[0]~P[i]的next值。
  2. 转移方程如下,
    dp[i] = max{dp[j-1]+1, 0<j<=i & P[i]==P[j]}
    方程这样写比较好看,但是具体实现的时候不用求max,利用next数组的特性去求比较快。可以去看一下参考文章或者代码实现。
  3. 初始化 dp[0] = 0
  4. 边界条件 …

####3.2 code
具体实现的时候,困扰我最多的地方反而是后面匹配的时候。我的leetcode代码如下,

string haystack="hello",needle="ll";
int n = haystack.size(),m=needle.size(),temp=0,i=0,j=0,flag=0;;

if(m==0) return m;
if(n<m) return -1;

vector<int> next(m,0);
// next[0]=-1;
// 计算 next数组   dp
for(int i = 1;i<m;i++){
    //如果匹配上
    if(needle[i]==needle[next[i-1]]){
        next[i] = next[i-1]+1;
        continue;
    }
    next[i]=0;
    temp = next[i-1];
    while(temp>0){
        if(needle[i]==needle[next[temp-1]]){
            next[i] = next[temp-1]+1;
            break;
        }
        temp = next[temp-1];
    }

}

//KMP algorithm
temp = -1;
while(i<n&&j<m){
    // if(temp==-1 && n-i<m) break;
    if(haystack[i] == needle[j]){
        temp = i-j;
        j++;i++;
        if(j >= m ) {flag=true;break;}
        continue;
    }
    //已开始匹配
    if(temp != -1){
        temp = -1;
        j=next[j-1];
        continue;
    }
    if(j != 0){
        j = next[j-1];
    }else{
        i++;
    }
}
if(!flag) temp = -1;

cout<<temp<<endl;
return temp;

###4.0 ref
如何更好地理解和掌握 KMP 算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值