hdu3455 dp

Leap Frog

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 548    Accepted Submission(s): 200


Problem Description
Jack and Jill play a game called "Leap Frog" in which they alternate turns jumping over each other. Both Jack and Jill can jump a maximum horizontal distance of 10 units in any single jump. You are given a list of valid positions x 1,x 2,…, x n where Jack or Jill may stand. Jill initially starts at position x 1, Jack initially starts at position x 2, and their goal is to reach position x n.Determine the minimum number of jumps needed until either Jack or Jill reaches the goal. The two players are never allowed to stand at the same position at the same time, and for each jump, the player in the rear must hop over the player in the front.
 

Input
The input file will contain multiple test cases. Each test case will begin with a single line containing a single integer n (where 2 <= n <= 100000). The next line will contain a list of integers x 1,x 2,…, x n where 0 <=x 1,x 2,…, x n<= 1000000. The end-of-fi le is denoted by a single line containing "0".
 

Output
For each input test case, print the minimum total number of jumps needed for both players such that either Jack or Jill reaches the destination, or -1 if neither can reach the destination.
 

Sample Input
  
6 3 5 9 12 15 17 6 3 5 9 12 30 40
 

Sample Output
  
3 -1
 

Source
 

Recommend
zhengfeng
 
dp[i][j]  看作前面人在第i个位置是后面的距离其j的最小步数。
具体方程见代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#define inf 0x3f3f3f3f
using namespace std;
const int N=100005;
int dp[N][15];
int hash[N*10];
int num[N];
int main()
{
    int n;
    while(scanf("%d",&n),n)
    {
        int i;
        memset(hash,-1,sizeof(hash));
        memset(dp,inf,sizeof(dp));
        for(i=1;i<=n;i++)
        {
            int temp;
            scanf("%d",&temp);
            num[i]=temp;
            hash[temp]=i;
        }
        int j,k;
        dp[2][num[2]-num[1]]=0;
        for(i=2;i<=n;i++)
        {
            for(j=1;j<=9;j++)
            {
                if(j>num[i])
                    break;
                for(k=j+1;k<=10;k++)
                {
                    int tt=num[i]-j;
                    if(hash[tt]>=0)
                        dp[i][j]=min(dp[hash[tt]][k-j]+1,dp[i][j]);
                }
            }
        }
        int mm=inf;
        for(i=1;i<=10;i++)
            if(dp[n][i]<mm)
                mm=dp[n][i];
        if(mm==inf)
            printf("-1\n");
        else
            printf("%d\n",mm);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值