题意
n 个点和
m 条路,求 m−2 条边经过两次, 2 条边经过一次的路有多少种。(无重边)
分析
先要判断除去孤点后,图是否联通,不联通则为
0 。先考虑每条路都走两遍,则每条边复制一遍,因此每个点的度都为偶数,则必有欧拉回路。
再删除两条边,看是否还是欧拉通路,则有以下四种情况:
①删去的2条边都是自环:删去后所有的点的度仍然是偶数,成立。
②删去的2条边中一条是自环:删去后只有2个点的度是奇数,成立。
③删去的2条边不是自环,且有公共点:删去后只有2个点的度是奇数,成立。
④删去的2条边不是自环,且无公共点:删去后有4个点的度是奇数,不成立。所以只要累加前三种情况则是答案。
枚举每条边。
为非自环的边, ans+=两个点所连边数−2+自环数 ;
为自环的边, ans+=m−1 。(任意去掉另一条边都可以)
最后将 ans/2 去掉重复情况。
代码
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<cctype>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<iomanip>
#include<sstream>
#include<limits>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
const ll INF = 1e18;
const int maxn = 2e6+10;
const ll MOD = 1000000007;
const double EPS = 1e-10;
const double Pi = acos(-1.0);
struct Edge{
int u,v;
}a[maxn];
vector<int>G[maxn];
int inq[maxn];
bool vis[maxn];
void dfs(int u)
{
vis[u] = true;
for(int i = 0; i < G[u].size(); i++)
{
int to = G[u][i];
if (!vis[to]) dfs(to);
}
}
int main(){
#ifdef LOCAL
//freopen("C:\\Users\\lanjiaming\\Desktop\\acm\\in.txt","r",stdin);
//freopen("output.txt","w",stdout);
#endif
//ios_base::sync_with_stdio(0);
int n,m,loop = 0;
cin>>n>>m;
int root;
for(int i = 1;i <= m; i++)
{
int x,y;
scanf("%d%d",&x,&y);
a[i].u=x;a[i].v=y;
if (x != y)
{
G[x].push_back(y);
G[y].push_back(x);
}else loop++;
inq[x]++; inq[y]++;
root = x;
}
dfs(root);
for(int i = 1;i <= n;i++)
if(!vis[i]&&inq[i]!=0)
{
puts("0");
return 0;
}
ll ans = 0;
for(int i = 1; i <= m; i++)
{
int x = a[i].u;
int y = a[i].v;
if (x!=y) ans += G[x].size()-1+G[y].size()-1+loop;
else ans += m-1;
}
cout<<ans/2<<endl;
return 0;
}