【POJ3666】Making the Grade 离散化+DP

学到了一个引理:在满足S最小化的条件下,一定存在一种构造序列B的方案,使得序列B中的数值都来自于A中。(数学归纳法+中位数定理得证)

对于状态的表示来说,首先肯定有一个 i ,表示选到了第 i 个数时对应的最优解,由于需要维护序列单调性,因此需要再在状态中加入一个因素 j ,表示在第 i 位选了离散化后的A[ j ]。

状态转移为\(dp[i][j]=min\{dp[i-1][k],k\in[1,j]\}+|A[i]-B[j]|\)

代码如下:

#include <cstdio>
#include <algorithm>
#include <iostream>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn=2010;

int n,len,a[maxn],b[maxn],dp[maxn][maxn];

void read_and_parse(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];

    sort(b+1,b+n+1);
    len=unique(b+1,b+n+1)-b-1;
}

void solve(){
    for(int i=1;i<=n;i++){
        int val=inf;
        for(int j=1;j<=len;j++){
            val=min(val,dp[i-1][j]);
            dp[i][j]=val+abs(a[i]-b[j]);
        }
    }
    int ans=dp[n][1];
    for(int i=2;i<=len;i++)ans=min(ans,dp[n][i]);
    printf("%d\n",ans);
}

int main(){
    read_and_parse();
    solve();
    return 0;
}

转载于:https://www.cnblogs.com/wzj-xhjbk/p/9774632.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值