POJ 3666 Making the Grade DP + 离散化 + 贪心

http://poj.org/problem?id=3666


题意:给一个序列,可以给每一个数假减一个数,代价为他们改变的数的绝对值,那么要求用最小代价把序列变成单调非增或者单调非减的(ps本题数据似乎只要变成非减就能过)

n<=1e3

思路是dp


dp[i][j]表示前i个数以j为结尾的非减序列的最小代价,当然这个j得离散化的啦 

dp[i]][j]=abs(a[i]-j)+dp[i-1][k] (k<=j ) :即从i-1个序列的最优方案里选一个转移咯

似乎 看起来是 i j k三个循环

但是很显然k是满足k<=j的,那么也就是当要计算dp[i][j]时,必须要知道dp[i-1][1...j]的最小值,

dp[i-1][1...j]肯定在 之前计算dp[i][1...j-1]时都访问过,那么我们记录一下他们的最小值mn即可

dp[i]][j]=abs(a[i]-j)+mn

复杂度n * j的范围


那么我们来看这个j,应该选什么呢,显然的话,j选择原序列的数就是最好的了,因为如果选了一个c[i]得到最优值,那么必然可以通过转换,使得最终序列花费不变,并全部用原序列的数。(贪心)



因此 i是1-n,j是a[1..n]的枚举

复杂度n^2


using namespace std;  
const int N=2005;  
const long long inf=(1<<60);  
int n;  
int a[N],b[N];  
long long int dp[N][N];  
void solve()  
{  
    for(int i=1;i<=n;i++)  
    {  
        long long mn=dp[i-1][1];  
        for(int j=1;j<=n;j++)  
        {  
            mn=min(mn,dp[i-1][j]);  
            dp[i][j]=Abs(a[i]-b[j])+mn;  
        }  
    }  
    long long ans=dp[n][1];  
    for(int i=1;i<=n;i++)  
        ans=min(ans,dp[n][i]);  
    printf("%lld\n",ans);  
}  
int main()  
{  
    scanf("%d",&n);  
    for(int i=1;i<=n;i++)  
    {  
        scanf("%d",a+i);  
        b[i]=a[i];  
    }  
    sort(b+1,b+n+1);  
    solve();  
      
    return 0;  
}  








  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值