Leetcode(455)——分发饼干
题目
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
输入: g = [1,2,3], s = [1,1]
输出: 1
解释:
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。
示例 2:
输入: g = [1,2], s = [1,2,3]
输出: 2
解释:
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.
提示:
- 1 1 1 <= g.length <= 3 ∗ 1 0 4 3 * 10^4 3∗104
- 0 0 0 <= s.length <= 3 ∗ 1 0 4 3 * 10^4 3∗104
- 1 1 1 <= g[i], s[j] <= 2 31 − 1 2^{31 - 1} 231−1
题解
关键点:想清楚局部最优,想清楚全局最优,感觉局部最优是可以推出全局最优,并想不出反例,那么就试一试贪心
方法一:排序+贪心
思路
因为饥饿度最小的孩子最容易吃饱,所以我们先考虑这个孩子。为了尽量使得剩下的饼干可以满足饥饿度更大的孩子,所以我们应该把大于等于这个孩子饥饿度的、且大小最小的饼干给这个孩子。满足了这个孩子之后,我们采取同样的策略,考虑剩下孩子里饥饿度最小的孩子,直到没有满足条件的饼干存在。
为了尽可能满足最多数量的孩子,从贪心的角度考虑,应该按照孩子的胃口从小到大的顺序依次满足每个孩子,且对于每个孩子,应该选择可以满足这个孩子的胃口且尺寸最小的饼干。证明如下。
假设有 m m m 个孩子,胃口值分别是 g 1 g_1 g1 到 g m g_m gm,有 n n n 块饼干,尺寸分别是 s 1 s_1 s1 到 s n s_n sn,满足 g i ≤ g i + 1 g_i \le g_{i+1} gi≤gi+1 和 s j ≤ s j + 1 s_j \le s_{j+1} sj≤sj+1,其中 1 ≤ i < m 1 \le i < m 1≤i<m, 1 ≤ j < n 1 \le j < n 1≤j<n。
假设在对前 i − 1 i-1 i−1 个孩子分配饼干之后,可以满足第 i i i 个孩子的胃口的最小的饼干是第 j j j 块饼干,即 s j s_j sj 是剩下的饼干中满足 g i ≤ s j g_i \le s_j gi≤sj 的最小值,最优解是将第 j j j 块饼干分配给第 i i i 个孩子。如果不这样分配,考虑如下两种情形:
- 如果 i < m i<m i<m 且 g i + 1 ≤ s j g_{i+1} \le s_j gi+1≤sj 也成立,则如果将第 j j j 块饼干分配给第 i + 1 i+1 i+1 个孩子,且还有剩余的饼干,则可以将第 j + 1 j+1 j+1 块饼干分配给第 i i i 个孩子,分配的结果不会让更多的孩子被满足;
- 如果 j < n j<n j<n,则如果将第 j + 1 j+1 j+1 块饼干分配给第 i i i 个孩子,当 g i + 1 ≤ s j g_{i+1} \le s_j gi+1≤sj 时,可以将第 j j j 块饼干分配给第 i + 1 i+1 i+1 个孩子,分配的结果不会让更多的孩子被满足;当 g i + 1 > s j g_{i+1}>s_j gi+1>sj 时,第 j j j 块饼干无法分配给任何孩子,因此剩下的可用的饼干少了一块,因此分配的结果不会让更多的孩子被满足,甚至可能因为少了一块可用的饼干而导致更少的孩子被满足。
基于上述分析,可以使用贪心的方法尽可能满足最多数量的孩子。
首先对数组 g g g 和 s s s 排序,然后从小到大遍历 g g g 中的每个元素,对于每个元素找到能满足该元素的 s s s 中的最小的元素。具体而言,令 i i i 是 g g g 的下标, j j j 是 s s s 的下标,初始时 i i i 和 j j j 都为 0 0 0,进行如下操作。
对于每个元素 g [ i ] g[i] g[i],找到 未被使用的 最小的 j j j 使得 g [ i ] ≤ s [ j ] g[i] \le s[j] g[i]≤s[j],则 s [ j ] s[j] s[j] 可以满足 g [ i ] g[i] g[i]。由于 g g g 和 s s s 已经排好序,因此整个过程只需要对数组 g g g 和 s s s 各遍历一次。当两个数组之一遍历结束时,说明所有的孩子都被分配到了饼干,或者所有的饼干都已经被分配或被尝试分配(可能有些饼干无法分配给任何孩子),此时被分配到饼干的孩子数量即为可以满足的最多数量。
代码实现
我自己的:
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
// 升序排序
sort(g.begin(), g.end());
sort(s.begin(), s.end());
int n = 0;
vector<int>::iterator p = s.begin();
for(auto kid: g){
while(p != s.end()){
// 判断这块饼干是否能让这个小孩吃饱
if(kid <= *p){
n++;
p++;
break;
}else p++;
}
if(p == s.end()) break;
}
return n;
}
};
复杂度分析
时间复杂度:
O
(
m
l
o
g
m
+
n
l
o
g
n
)
O(mlogm+nlogn)
O(mlogm+nlogn),其中
m
m
m 和
n
n
n 分别是数组
g
g
g 和
s
s
s 的长度。对两个数组排序的时间复杂度是
O
(
m
log
m
+
n
log
n
)
O(m \log m + n \log n)
O(mlogm+nlogn),遍历数组的时间复杂度是
O
(
m
+
n
)
O(m+n)
O(m+n),因此总时间复杂度是
O
(
m
log
m
+
n
log
n
)
O(m \log m + n \log n)
O(mlogm+nlogn)。
空间复杂度:
O
(
log
m
+
log
n
)
O(\log m + \log n)
O(logm+logn),其中
m
m
m 和
n
n
n 分别是数组
g
g
g 和
s
s
s 的长度。空间复杂度主要是排序的额外空间开销。