Leetcode(88)——合并两个有序数组

Leetcode(88)——合并两个有序数组

题目

给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。

请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。

注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。

示例 1:

输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。

示例 2:

输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。

示例 3:

输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。

提示:

  • nums1.length == m + n
  • nums2.length == n
  • 0 0 0 <= m, n <= 200 200 200
  • 1 1 1 <= m + n <= 200 200 200
  • − 1 0 9 -10^9 109 <= nums1[i], nums2[j] <= 1 0 9 10^9 109

进阶:你可以设计实现一个时间复杂度为 O ( m + n ) O(m + n) O(m+n) 的算法解决此问题吗?

题解

方法一:直接合并后排序

思路

​​  最直观的方法是先将数组 nums 2 \textit{nums}_2 nums2 放进数组 nums 1 \textit{nums}_1 nums1 的尾部,然后直接对整个数组进行排序。

代码实现
class Solution {
public:
    void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
        for (int i = 0; i != n; ++i) {
            nums1[m + i] = nums2[i];
        }
        sort(nums1.begin(), nums1.end());
    }
};
复杂度分析

时间复杂度 O ( ( m + n ) l o g ( m + n ) ) O((m+n)log(m+n)) O((m+n)log(m+n))。排序序列长度为 m + n m+n m+n,套用快速排序的时间复杂度即可,平均情况为 O ( ( m + n ) log ⁡ ( m + n ) ) O((m+n)\log(m+n)) O((m+n)log(m+n))
空间复杂度 O ( log ⁡ ( m + n ) ) O(\log(m+n)) O(log(m+n))排序序列长度为 m + n m+n m+n,因为使用了快速排序,所以套用快速排序的空间复杂度即可,平均情况为 O ( log ⁡ ( m + n ) ) O(\log(m+n)) O(log(m+n))

方法二:双指针+辅助数组

思路

​​  方法一没有利用数组 nums 1 \textit{nums}_1 nums1 nums 2 \textit{nums}_2 nums2 已经被排序的性质。为了利用这一性质,我们可以使用双指针方法。这一方法将两个数组看作队列,每次从两个数组头部取出比较小的数字放到结果中。我们为两个数组分别设置一个指针 p 1 p_1 p1 p 2 p_2 p2 来作为队列的头部指针。如下面的动画所示:

在这里插入图片描述

代码实现

Leetcode 官方题解:

class Solution {
public:
    void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
        int p1 = 0, p2 = 0;
        int sorted[m + n];
        int cur;
        while (p1 < m || p2 < n) {
            if (p1 == m) {
                cur = nums2[p2++];
            } else if (p2 == n) {
                cur = nums1[p1++];
            } else if (nums1[p1] < nums2[p2]) {
                cur = nums1[p1++];
            } else {
                cur = nums2[p2++];
            }
            sorted[p1 + p2 - 1] = cur;
        }
        for (int i = 0; i != m + n; ++i) {
            nums1[i] = sorted[i];
        }
    }
};
复杂度分析

时间复杂度 O ( m + n ) O(m+n) O(m+n)。指针移动单调递减,最多移动 m + n m+n m+n 次,因此时间复杂度为 O ( m + n ) O(m+n) O(m+n)
空间复杂度 O ( m + n ) O(m+n) O(m+n)。需要建立长度为 m + n m+n m+n 的中间数组 sorted \textit{sorted} sorted

方法三:双逆向指针

思路

​​  方法二中,之所以要使用临时变量,是因为如果直接合并到数组 nums 1 \textit{nums}_1 nums1 中, nums 1 \textit{nums}_1 nums1 中的元素可能会在取出之前被覆盖。那么如何直接避免覆盖 nums 1 \textit{nums}_1 nums1 中的元素呢?观察可知, nums 1 \textit{nums}_1 nums1 的后半部分是空的,可以直接覆盖而不会影响结果。因此可以指针设置为从后向前遍历,每次取两者之中的较大者放进 nums 1 \textit{nums}_1 nums1 的最后面。

​​  严格来说,在此遍历过程中的任意一个时刻, nums 1 \textit{nums}_1 nums1 数组中有 m − p 1 − 1 m-p_1-1 mp11 个元素被放入 nums 1 \textit{nums}_1 nums1 的后半部, nums 2 \textit{nums}_2 nums2 数组中有 n − p 2 − 1 n-p_2-1 np21 个元素被放入 nums 1 \textit{nums}_1 nums1 的后半部,而在指针 p 1 p_1 p1 的后面, nums 1 \textit{nums}_1 nums1 数组有 m + n − p 1 − 1 m+n-p_1-1 m+np11 个位置。由于
m + n − p 1 − 1 ≥ m − p 1 − 1 + n − p 2 − 1 m+n-p_1-1\geq m-p_1-1+n-p_2-1 m+np11mp11+np21

等价于
p 2 ≥ − 1 p_2\geq -1 p21

永远成立,因此 p 1 p_1 p1 后面的位置永远足够容纳被插入的元素,不会产生 p 1 p_1 p1 的元素被覆盖的情况。

在这里插入图片描述

代码实现

Leetcode 官方题解:

class Solution {
public:
    void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
        int pos = m-- + n-- - 1;
        while (m >= 0 && n >= 0)
            nums1[pos--] = nums1[m] > nums2[n]? nums1[m--]: nums2[n--];
        while (n >= 0)
            nums1[pos--] = nums2[n--];
    }
};

我自己的:

class Solution {
public:
    void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
        if(n == 0) return;
        while(true){
            if(m <= 0){
                while(n){
                    nums1[n+m-1] = nums2[n-1];
                    n--;
                }
            }
            if(n <= 0) return;
            if(nums1[m-1] >= nums2[n-1]){
                nums1[n+m-1] = nums1[m-1];
                m--;
            }else{
                nums1[n+m-1] = nums2[n-1];
                n--;
            }
        }
    }
};
复杂度分析

时间复杂度 O ( m + n ) O(m+n) O(m+n)。指针移动单调递减,最多移动 m + n m+n m+n 次,因此时间复杂度为 O ( m + n ) O(m+n) O(m+n)
空间复杂度 O ( 1 ) O(1) O(1)。直接对数组 nums 1 \textit{nums}_1 nums1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值