Leetcode(142)——环形链表 II

Leetcode(142)——环形链表 II

题目

给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。

不允许修改 链表。

示例 1:

在这里插入图片描述
输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:

在这里插入图片描述
输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:

在这里插入图片描述
输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。

提示:

  • 链表中节点的数目范围在范围 [ 0 , 1 0 4 ] [0, 10^4] [0,104]
  • − 1 0 5 -10^5 105 <= Node.val <= 1 0 5 10^5 105
  • pos 的值为 − 1 -1 1 或者链表中的一个有效索引

进阶:你是否可以使用 O ( 1 ) O(1) O(1) 空间复杂度的算法解决此题?

题解

方法一:哈希表

思路

​​  一个非常直观的思路是:我们遍历链表中的每个节点,并将它记录下来;一旦再次遇到了此前遍历过的节点,就可以判定链表中存在环。借助哈希表可以很方便地实现

代码实现

Leetcode 官方题解:

class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        unordered_set<ListNode *> visited;
        while (head != nullptr) {
            if (visited.count(head)) {
                return head;
            }
            visited.insert(head);
            head = head->next;
        }
        return nullptr;
    }
};
复杂度分析

时间复杂度 O ( N ) O(N) O(N),其中 N N N 为链表中节点的数目。我们恰好需要访问链表中的每一个节点。
空间复杂度 O ( N ) O(N) O(N),其中 N N N 为链表中节点的数目。我们需要将链表中的每个节点都保存在哈希表当中。

方法二:快慢指针

思路

​​  我们使用快慢指针, fast \textit{fast} fast slow \textit{slow} slow它们起始都位于链表的头部随后, slow \textit{slow} slow 指针每次向后移动一个位置,而 fast \textit{fast} fast 指针向后移动两个位置。如果链表中存在环,则 fast \textit{fast} fast 指针最终将再次与 slow \textit{slow} slow 指针在环中相遇,且一定是在慢指针走到链表结尾之前相遇

​​  如下图所示,设链表中环外部分的长度为 a a a slow \textit{slow} slow 指针进入环后,又走了 b b b 的距离与 fast \textit{fast} fast 相遇。此时, fast \textit{fast} fast 指针已经走完了环的 n n n,因此快指针 fast \textit{fast} fast 走过的总距离为 a + n ( b + c ) + b = a + ( n + 1 ) b + n c a+n(b+c)+b=a+(n+1)b+nc a+n(b+c)+b=a+(n+1)b+nc在这里插入图片描述

​​  根据题意,任意时刻, fast \textit{fast} fast 指针走过的距离都为 slow \textit{slow} slow 指针的 2 2 2。因此,我们有等式如下:
a + ( n + 1 ) b + n c = 2 ( a + b )    ⟹    a = c + ( n − 1 ) ( b + c ) a+(n+1)b+nc=2(a+b) \implies a=c+(n-1)(b+c) a+(n+1)b+nc=2(a+b)a=c+(n1)(b+c)

​​  有了 a = c + ( n − 1 ) ( b + c ) a=c+(n-1)(b+c) a=c+(n1)(b+c) 的等量关系,我们会发现:从内环减去 b b b 的长度加上 n − 1 n-1 n1 圈的环长,恰好等于从链表头部到入环点的距离

​​  因此,当发现 slow \textit{slow} slow fast \textit{fast} fast 相遇时,我们再额外使用一个指针 ptr \textit{ptr} ptr。起始,它指向链表头部;随后,它和 slow \textit{slow} slow 每次向后移动一个位置。最终,它们会在入环点相遇。

为什么慢指针入环第一圈没走完的时候就会和快指针相遇

环的长度 A A A慢指针在入环的时候快指针在环中的位置 B B B(取值范围为 [ 0 , A − 1 ] [0, A-1] [0,A1]),
当快慢指针相遇时 [慢指针在环中走了 C C C],有
C % A = ( B + 2C) % A,等价于
A n + C = B + 2 C An + C = B + 2C An+C=B+2C,合并得
C = A n − B C = An - B C=AnB
n = 1 n=1 n=1 时, 0 < = C < A 0 <= C < A 0<=C<A
慢指针在其入环的第一圈没走完时一定会和快指针相遇
在这里插入图片描述

代码实现

Leetcode 官方题解:

class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        ListNode *slow = head, *fast = head;
        while (fast != nullptr) {
            slow = slow->next;
            if (fast->next == nullptr) break;
            else fast = fast->next->next;
            if (fast == slow) {
                fast = head;	// 此时快指针已经没有用了,拿来作临时变量使用
                while (fast != slow) {
                    fast = fast->next;
                    slow = slow->next;
                }
                return fast;
            }
        }
        return nullptr;
    }
};
复杂度分析

时间复杂度:$O(N),其中 N N N 为链表中节点的数目。在最初判断快慢指针是否相遇时, slow \textit{slow} slow 指针走过的距离不会超过链表的总长度;随后寻找入环点时,走过的距离也不会超过链表的总长度。因此,总的执行时间为 O ( N ) + O ( N ) = O ( N ) O(N)+O(N)=O(N) O(N)+O(N)=O(N)
空间复杂度 O ( 1 ) O(1) O(1)。我们只使用了 slow , fast \textit{slow}, \textit{fast} slow,fast 两个指针。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值