Leetcode(215)——数组中的第K个最大元素
题目
给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。
请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
示例 1:
输入: [3,2,1,5,6,4] 和 k = 2
输出: 5
示例 2:输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4
提示:
- 1 1 1 <= k <= nums.length <= 1 0 4 10^4 104
- − 1 0 4 -10^4 −104 <= nums[i] <= 1 0 4 10^4 104
题解
方法一:冒泡排序
思路
冒泡排序的原理
代码实现
我的:
class Solution {
public:
int findKthLargest(vector<int>& nums, int k) {
int n = nums.size();
if(n == 1) return nums[0];
bool swapped;
for(int i = 0; i < n; i++){
swapped = false;
for(int t = 0; t < n-i-1; t++){
if(nums[t] < nums[t+1]){
swap(nums[t], nums[t+1]);
swapped = true;
}
}
if(!swapped) break;
}
return nums[k-1];
}
};
复杂度分析
时间复杂度:
O
(
n
log
n
)
O(n \log n)
O(nlogn)
空间复杂度:
O
(
1
)
O(1)
O(1)
方法二:简单选择排序
思路
简单选择排序的原理
代码实现
我的:
class Solution {
public:
int findKthLargest(vector<int>& nums, int k) {
int n = nums.size();
if(n == 1) return nums[0];
int max, tmp;
for(int i = 0; i < n; i++){
max = i;
for(int t = i+1; t < n; t++){
if(nums[max] < nums[t]) max = t;
}
tmp = nums[i];
nums[i] = nums[max];
nums[max] = tmp;
}
return nums[k-1];
}
};
复杂度分析
时间复杂度:
O
(
n
log
n
)
O(n \log n)
O(nlogn)
空间复杂度:
O
(
1
)
O(1)
O(1)
方法三:直接插入排序
思路
直接插入排序的原理
代码实现
我的:
class Solution {
public:
int findKthLargest(vector<int>& nums, int k) {
int n = nums.size();
if(n == 1) return nums[0];
for(int i = 1; i < n; i++){
// 设定第一个元素是排好序的长度为1的序列,所以从第二个元素开始排序
for(int t = i; t > 0 && nums[t] > nums[t-1]; t--)
swap(nums[t], nums[t-1]);
}
return nums[k-1];
}
};
复杂度分析
时间复杂度:
O
(
n
log
n
)
O(n \log n)
O(nlogn)
空间复杂度:
O
(
1
)
O(1)
O(1)
方法四:希尔排序
思路
希尔排序的原理
代码实现
我的:
class Solution {
public:
int findKthLargest(vector<int>& nums, int k) {
int n = nums.size();
if(n == 1) return nums[0];
int increment = n/3+1; // 保底为1
while(increment > 0){
// 直接插入排序
for(int i = 0; i < n; i++){
for(int t = i; t-increment >= 0 && nums[t] > nums[t-increment]; t -= increment)
swap(nums[t], nums[t-increment]);
}
increment--;
}
return nums[k-1];
}
};
复杂度分析
时间复杂度:
O
(
n
3
/
2
)
O(n^{3/2})
O(n3/2)
空间复杂度:
O
(
1
)
O(1)
O(1)
方法五:归并排序
思路
归并排序的原理
代码实现
我的(递归):
class Solution {
void MSort(vector<int>& nums, int l, int r){
if(l == r)
nums[l] = nums[l];
else{
vector<int> Tmp(r-l+1);
int mid = (l+r)/2;
MSort(nums, l, mid);
MSort(nums, mid+1, r);
// 将上面两个分组归并到一起
int p1 = l, p2 = mid+1, p = 0;
while(p1 <= mid && p2 <= r){
if(nums[p1] < nums[p2])
Tmp[p++] = nums[p2++];
else Tmp[p++] = nums[p1++];
}
if(p1 <= mid)
while(p1 <= mid) Tmp[p++] = nums[p1++];
if(p2 <= r)
while(p2 <= r) Tmp[p++] = nums[p2++];
p = 0;
while(l <= r)
nums[l++] = Tmp[p++];
}
}
public:
int findKthLargest(vector<int>& nums, int k) {
if(nums.size() == 1) return nums[0];
// for(int i = 0; i < n; i++){}
// 归并排序
MSort(nums, 0, nums.size()-1);
return nums[k-1];
}
};
复杂度分析
时间复杂度:
O
(
n
log
n
)
O(n \log n)
O(nlogn)
空间复杂度:
O
(
n
)
O(n)
O(n)
方法六:快速排序(改进——「快速选择」算法)
思路
必须要有打乱数组的操作,即枢轴选取不固定,否则容易遇到极端情况导致时间复杂度为 O ( n 2 ) O(n^2) O(n2)。
我们可以用快速排序来解决这个问题,先对原数组排序,再返回倒数第 k k k 个位置,这样平均时间复杂度是 O ( n log n ) O(n \log n) O(nlogn),但其实我们可以做的更快。
首先我们来回顾一下快速排序,这是一个典型的分治算法。我们对数组 a [ l ⋯ r ] a[l \cdots r] a[l⋯r] 做快速排序的过程是(参考《算法导论》):
- 分解: 将数组 a [ l ⋯ r ] a[l \cdots r] a[l⋯r] 「划分」成两个子数组 a [ l ⋯ q − 1 ] a[l \cdots q - 1] a[l⋯q−1]]、 a [ q + 1 ⋯ r ] a[q + 1 \cdots r] a[q+1⋯r],使得 a [ l ⋯ q − 1 ] a[l \cdots q - 1] a[l⋯q−1] 中的每个元素小于等于 a [ q ] a[q] a[q],且 a [ q ] a[q] a[q] 小于等于 a [ q + 1 ⋯ r ] a[q + 1 \cdots r] a[q+1⋯r] 中的每个元素。其中,计算下标 q q q 也是「划分」过程的一部分。
- 解决: 通过递归调用快速排序,对子数组 a [ l ⋯ q − 1 ] a[l \cdots q - 1] a[l⋯q−1] 和 a [ q + 1 ⋯ r ] a[q + 1 \cdots r] a[q+1⋯r] 进行排序。
- 合并: 因为子数组都是原址排序的,所以不需要进行合并操作, a [ l ⋯ r ] a[l \cdots r] a[l⋯r] 已经有序。
- 上文中提到的 「划分」 过程是:从子数组
a
[
l
⋯
r
]
a[l \cdots r]
a[l⋯r] 中选择任意一个元素
x
x
x 作为主元,调整子数组的元素使得左边的元素都小于等于它,右边的元素都大于等于它,
x
x
x 的最终位置就是
q
q
q。
由此可以发现每次经过「划分」操作后,我们一定可以确定一个元素的最终位置,即 x x x 的最终位置为 q q q,并且保证 a [ l ⋯ q − 1 ] a[l \cdots q - 1] a[l⋯q−1] 中的每个元素小于等于 a [ q ] a[q] a[q],且 a [ q ] a[q] a[q] 小于等于 a [ q + 1 ⋯ r ] a[q + 1 \cdots r] a[q+1⋯r] 中的每个元素。所以只要某次划分的 q q q 为倒数第 k k k 个下标的时候,我们就已经找到了答案。 我们只关心这一点,至于 a [ l ⋯ q − 1 ] a[l \cdots q - 1] a[l⋯q−1] 和 a [ q + 1 ⋯ r ] a[q+1 \cdots r] a[q+1⋯r] 是否是有序的,我们不关心。
因此,我们可以改进快速排序算法来解决这个问题:
在分解的过程当中,我们会对子数组进行划分,如果划分得到的
q
q
q 正好就是我们需要的下标(即当划分完后遇到 k == q-1
,此时
a
[
q
]
a[q]
a[q] 左边的
k
−
1
k-1
k−1 个元素都大于等于它,右边的元素都小于等于它),就直接返回
a
[
q
]
a[q]
a[q];否则,如果
q
q
q 比目标下标小,就递归右子区间,否则递归左子区间。
这样就可以把原来递归两个区间变成只递归一个区间,提高了时间效率。这就是「快速选择」算法。
我们知道快速排序的性能和「划分」出的子数组的长度密切相关。直观地理解如果每次规模为 n n n 的问题我们都划分成 1 1 1 和 n − 1 n - 1 n−1,每次递归的时候又向 n − 1 n - 1 n−1 的集合中递归,这种情况是最坏的,时间代价是 O ( n 2 ) O(n ^ 2) O(n2)。我们可以引入随机化来加速这个过程,它的时间代价的期望是 O ( n ) O(n) O(n),证明过程可以参考「《算法导论》9.2:期望为线性的选择算法」。
代码实现
Leetcode 官方题解:
class Solution {
public:
int quickSelect(vector<int>& a, int l, int r, int index) {
int q = randomPartition(a, l, r);
if (q == index) {
return a[q];
} else {
return q < index ? quickSelect(a, q + 1, r, index) : quickSelect(a, l, q - 1, index);
}
}
inline int randomPartition(vector<int>& a, int l, int r) {
int i = rand() % (r - l + 1) + l;
swap(a[i], a[r]);
return partition(a, l, r);
}
inline int partition(vector<int>& a, int l, int r) {
int x = a[r], i = l - 1;
for (int j = l; j < r; ++j) {
if (a[j] <= x) {
swap(a[++i], a[j]);
}
}
swap(a[i + 1], a[r]);
return i + 1;
}
int findKthLargest(vector<int>& nums, int k) {
srand(time(0));
return quickSelect(nums, 0, nums.size() - 1, nums.size() - k);
}
};
我的(递归):
class Solution {
int Partition(vector<int>& nums, int l, int r){
// 打乱数组,采用三数取中
int mid = l+(r-l)/2;
if(nums[l] > nums[r]) swap(nums[l], nums[r]);
if(nums[mid] > nums[r]) swap(nums[mid], nums[r]);
if(nums[mid] > nums[l]) swap(nums[mid], nums[l]);
// 此时nums[l]为三个数字的中位数
int privot = nums[l]; // 选取第一个为枢轴
while(l < r){
while(l < r && nums[r] <= privot)
r--;
nums[l] = nums[r];
while(l < r && nums[l] >= privot)
l++;
nums[r] = nums[l];
}
nums[l] = privot;
return l;
}
void Quicksort(vector<int>& nums, int l, int r){
if(l < r){
int privot = Partition(nums, l, r); // 获取枢轴
Quicksort(nums, l, privot-1);
Quicksort(nums, privot+1, r);
}
}
public:
int findKthLargest(vector<int>& nums, int k) {
if(nums.size() == 1) return nums[0];
// 快速排序
Quicksort(nums, 0, nums.size()-1);
return nums[k-1];
}
};
复杂度分析
时间复杂度:Leetcode 官方题解的时间复杂度为
O
(
n
)
O(n)
O(n)。常规快速排序的平均时间复杂度为
O
(
n
log
n
)
O(n \log n)
O(nlogn)。
空间复杂度:
O
(
log
n
)
O(\log n)
O(logn),递归使用栈空间的空间代价的期望为
O
(
log
n
)
O(\log n)
O(logn)。
方法七:堆排序
思路
构建一个大顶堆,然后删除 k − 1 k-1 k−1 个堆顶元素,则此时的堆顶元素为第 k k k 大的元素。
代码实现
Leetcode 官方题解:
class Solution {
public:
void maxHeapify(vector<int>& a, int i, int heapSize) {
int l = i * 2 + 1, r = i * 2 + 2, largest = i;
if (l < heapSize && a[l] > a[largest]) {
largest = l;
}
if (r < heapSize && a[r] > a[largest]) {
largest = r;
}
if (largest != i) {
swap(a[i], a[largest]);
maxHeapify(a, largest, heapSize);
}
}
void buildMaxHeap(vector<int>& a, int heapSize) {
for (int i = heapSize / 2; i >= 0; --i) {
maxHeapify(a, i, heapSize);
}
}
int findKthLargest(vector<int>& nums, int k) {
int heapSize = nums.size();
buildMaxHeap(nums, heapSize);
for (int i = nums.size() - 1; i >= nums.size() - k + 1; --i) {
swap(nums[0], nums[i]);
--heapSize;
maxHeapify(nums, 0, heapSize);
}
return nums[0];
}
};
复杂度分析
时间复杂度:
O
(
n
log
n
)
O(n \log n)
O(nlogn),建堆的时间代价是
O
(
n
)
O(n)
O(n),删除的总代价是
O
(
k
log
n
)
O(k \log n)
O(klogn),因为
k
<
n
k < n
k<n,故渐进时间复杂为
O
(
n
+
k
log
n
)
O(n + k \log n)
O(n+klogn) 化简为
O
(
n
log
n
)
O(n \log n)
O(nlogn)。
空间复杂度:
O
(
log
n
)
O(\log n)
O(logn),即递归写法使用栈空间的空间代价。