在咖啡里溺水的鱼

追求内心的宁静

深入理解JVM——Java内存区域与内存溢出异常

本文为 《深入理解Java虚拟机》第二章内容的学习笔记,部分内容经过二次加工。若对相关知识感兴趣,推荐购书深入阅读。若认为文章涉嫌侵权,请联系作者及时删除。
本作品采用 知识共享署名-非商业性使用-相同方式共享 3.0 中国大陆许可协议 (CC BY-NC-SA 3.0 CN) 进行许可 。非商业性质转载请注明作者和出处,禁止商业性质转载。
开源创造世界

个人练习代码:https://github.com/dreamerfable/Understanding-the-JVM

运行时数据区域

根据 JVM规范,Java虚拟机锁管理的内存包括以下几个运行时区域

各线程独立存储,互不影响的内存,称作线程私有的内存

Program Counter Register

程序计数器是一块较小的内存空间,可以看做是当前线程所执行的字节码的行号指示器,分支、循环、跳转、异常处理等基础功能都需要依赖它完成

线程私有

这个区域不存在OutOfMemoryError情况

Virtual Machine Stack

虚拟机栈描述的是Java方法执行的内存模型,每个方法在执行的同时都会创建一个栈帧 Stack Frame,用于存储局部变量表、操作数栈、动态链接、方法出口等信息。每一个方法调用直至执行完成的过程,对应着一个栈帧在虚拟机栈中入栈到出栈的过程

线程私有

如果线程请求的栈深度大于虚拟机所允许的深度,抛出StackOverflowError
如果虚拟机栈可以动态扩展,扩展时如果无法申请到足够的内存,抛出OutOfMemoryError异常

Native Method Stack

本地方法栈与VM Stack作用类似。不同的是,VM Stack 为虚拟机执行Java方法服务,而本地方法栈为虚拟机使用到的Native方法服务

虚拟机规范对本地方法栈没有强制规定,部分虚拟机把本地方法栈与虚拟机栈合二为一,如HotSpot

会抛出StackOverflowError和OutOfMemoryError。

Heap

堆,是被所有线程共享的一块内存区域,在虚拟机启动时创建。用于存放对象实例,几乎所有对象实例都在这里分配内存

堆是垃圾收集器管理的主要区域。从内存回收角度看,由于现在收集器基本都采用分代收集算法,所以堆可以细分为:新生代、老年代;再细致可以分为Eden空间、From Survivor空间、To Survivor空间等。

在堆中没有内存完成实例分配,并且堆也无法再扩展时,抛出OutOfMemoryError异常。

Method Area

方法区也是被所有线程共享的内存区域,用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等

JVM规范将其描述为堆的一个逻辑部分,但其别名为 Non-Heap,用来将其与堆加以区分。

根据JVM规范,当方法区无法满足内存分配需求时,将抛出OutOfMemoryError异常。

Runtime Constant Pool

运行时常量池用于存放Class文件中的常量池

常量池 Constant Pool Table 在Class文件中用于存放编译期生成的各种字面量和符号引用,这部分内容在类加载后会进入Method Area的运行时常量池。

运行时常量池除了保存Class文件中描述的符号引用外,还会把翻译出来的直接引用也存储下来。另外,运行时常量池相比较于Class文件常量池具有动态性,可以保存运行时产生的常量。

无法再申请到内存时抛出OutOfMemoryError异常。

Direct Memory

直接内存 不是虚拟机运行时数据区的一部分,也不是JVM规范中定义的内存区域。但这部分同样被频繁的使用,而且也可能导致OutOfMemoryError异常出现。

JDK1.4中新加入的NIO类,引入了一种基于通道 Channel 与 缓冲区 Buffer 的 I/O方式,它可以使用Native函数库直接分配堆外内存,然后通过一个存储在Java堆中的DirectByteBuffer对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在Java堆和Native堆中来回复制数据。

本季直接内存的分配不会受到Java堆大小的限制,但是其受到本机总内存大小以及处理器寻址空间的限制,可能会导致动态扩展时出现OutOfMemoryError异常。

阅读更多
版权声明:本文为博主原创,允许非商业性质转载但请注明原作者和出处。 https://blog.csdn.net/KEY0323/article/details/80686114
个人分类: Java
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭