hdoj5667 BestCoder Round #80 【费马小定理(膜拜)+矩阵快速幂+快速幂】

#include<cstdio>
#include<string>
#include<iostream>
#include<vector>
#include<set>
#include<map>
#include<math.h>
#include<queue>
#include<stdlib.h>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;

/*
1 0 0
1 C 1
0 1 0

*/
/*费马小定理的运用【第一次,膜拜费马小定理】*/

LL n,a,b,c,p,q;

struct asd{
    LL a[5][5];
};

asd mul(asd a1,asd a2)
{
    asd ans;
    for(int i=0;i<3;i++)
    {
        for(int j=0;j<3;j++)
        {
            ans.a[i][j]=0;
            for(int k=0;k<3;k++)
            {
                ans.a[i][j]+=a1.a[i][k]*a2.a[k][j];
                ans.a[i][j]%=q;
            }
            ans.a[i][j]%=q;
        }
    }
    return ans;
}

asd quickmul(LL g,asd z)
{
    asd ans;
    for(int i=0;i<3;i++)
    {
        for(int j=0;j<3;j++)
        {
            if(i==j)
                ans.a[i][j]=1;
            else
                ans.a[i][j]=0;
        }
    }
    while(g)
    {
        if(g%2)
        {
            ans=mul(ans,z);
        }
        g/=2;
        z=mul(z,z);
    }
    return ans;
}

LL liu(LL x,LL y)
{
    LL ans;
    ans=1;
    while(y)
    {
        if(y%2)
            ans=ans*x%p;
        y/=2;
        x=x*x%p;
    }
    return ans;
}

/***---先用矩阵快速幂算出次数,然后用快速幂算出答案-----***/
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld%lld%lld%lld%lld",&n,&a,&b,&c,&p);
        if(n==1)
        {
            printf("1\n");
            continue;
        }
        q=p-1;
        if(a%p==0)
        {
            printf("0\n");
            continue;
        }

        asd m;
        m.a[0][0]=1;m.a[0][1]=0;m.a[0][2]=0;
        m.a[1][0]=1;m.a[1][1]=c;m.a[1][2]=1;
        m.a[2][0]=0;m.a[2][1]=1;m.a[2][2]=0;
        asd ans;
        ans=quickmul(n-2,m);    //m矩阵的(n-1)次,之后还要×一个特定矩阵 z;PS:因为算出了的已经包括了两个,然后所以是n-2...搞了半个小时,然后被厂长发现...瞎几把连测试都不会...

//        asd an;
//        an.a[0][0]=1;an.a[0][1]=0;an.a[0][2]=0;
//        an.a[1][0]=1;an.a[1][1]=2;an.a[1][2]=1;
//        an.a[2][0]=0;an.a[2][1]=1;an.a[2][2]=0;
//        an=quickmul(2,an);
//        for(int i=0;i<3;i++)
//        {
//            for(int j=0;j<3;j++)
//                printf("%d ",an.a[i][j]);
//            printf("\n");
//        }
//        printf("%lld\n",liu(2,3));


//        asd z;
//        z.a[0][0]=b;
//        z.a[1][0]=b;
//        z.a[2][0]=0;

        LL pp;
        pp=(ans.a[1][0]*b+ans.a[1][1]*b)%q;       //直接得出 次数

        LL k;
        k=liu(a,pp);                //快速幂得出答案
        printf("%lld\n",k%p);

    }
    return 0;
}
/*
可以这样测案例
100
1 3 3 3 233
2 3 3 3 233
3 3 3 3 233
4 3 3 3 233
5 3 3 3 233

*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值