LIS LCS LCIS (主要过一遍,重在做题)

只详细讲解LCS和LCIS,别的不讲…做题优先。

先得理解最长上升子序列吧,那个HDOJ拦截导弹系列可以做一下,然后用O(nlog(n))的在做一遍

然后就是真正理解LCS;

真正理解源于做题,做题就像查漏补缺一样,你总有不会的地方。
这里写图片描述

【完全的求一个最长公共子序列】
(非常彻底地理解路径或者说是状态转移的规律)
先是初始化
付一个0的dp数组,把dp作为一个介体达到一种最长公共子序列的目的
然后就开始更新dp的值,dp的状态转移方程OK,然后根据状态转移方程,
可以很清楚地知道,路径的变化就是状态转移变化的方向。【这样就可以实现路径的初始模型】

【详细阐述路径】
就是标记啊,因为LCS问题上面,状态转移只有三种,向下,向右,还有右下,然后就是搞三个标记,在竖直方向上移动的话就是-1,在水平方向上移动的话就是1,然后如果满足了相等,要斜对角移动的话就是0,然后递归进行输出。
【反着的一个题目(拓展)】

另一个问题就是给你两个序列,再给你一个序列,然后问你前面两个序列能否组成被给的第三个序列。

DP求解:定义dp[i][j]表示A中前i个字符与B中前j个字符是否能组成C中的前 (i+j) 个字符,如果能标记true,如果不能标记false;
满足什么状态可以转变成什么状态;

【小优化】
用个滚动数组;减少内存;

【彻底理解的LCS的应用】

Hdoj3779,hdoj1501,poj2192,poj2250,poj1159

【补】

【LIS的nlog(n)】

int a[1010];
int d[1010];

int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        d[1]=a[1];
        int len=1;
        int j;
        /*
        严格单调递增子序列就是lower_bound();非严格单调子序列就是upper_bound();
        */
        for(int i=2;i<=n;i++)
        {
            if(a[i]>=d[len]) {len++;d[len]=a[i];}
        else{
             int pos=upper_bound(d+1,d+len,a[i])-d;//非严格单调
             d[pos]=a[i];
        }
        }
        printf("%d\n",len);
    }
    return 0;
}


【最长公共上升子序列(LICS)】
题分成两种,一个是在求个LICS个数,还有
一个是要求求LICS的样子codeforces的10D好像

下面的解释来自百度/各种博客…集结【慢慢看】

//某大神的几句话的事:http://www.cnblogs.com/ka200812/archive/2012/10/15/2723870.html
设题目给出a[],b[]两个序列。f[j]表示b序列到j的时候,与a[??]序列构成最长公共上升子序列的最优解。其中a[??]序列,从1到n枚举过来。
如果某一个时刻a[i]==b[j],那么显然,我们就应该在0到j-1中,找一个f值最大的来更新最优解。这和求上升子序列是思想是一样的。另外,在枚举b[j]的时候,我们顺便保存一下小于a[i]的f值最大的b[j],这样在更新的时候,我们就可以做到O(1)的复杂度,从而将整个算法的复杂度保证在O(nm)
输入案例
/*
10
7 10 1 2 1 7 1 5 9 9
9
6 2 5 6 7 7 5 5 2
*/

看不懂大神的几句话,看这个…【大自然的搬运工】…(来自百度)
预备知识:动态规划的基本思想,LCS,LIS。
问题:字符串a,字符串b,求a和b的LCIS(最长公共上升子序列)。
首先我们可以看到,这个问题具有相当多的重叠子问题。于是我们想到用DP搞。DP的首要任务是什么?定义状态。
1定义状态F[i][j]表示以a串的前i个字符b串的前j个字符且以b[j]为结尾构成的LCIS的长度。
为什么是这个而不是其他的状态定义?最重要的原因是我只会这个,还有一个原因是我知道这个定义能搞到平方的算法。而我这只会这个的原因是,这个状态定义实在是太好用了。这一点我后面再说。
我们来考察一下这个这个状态。思考这个状态能转移到哪些状态似乎有些棘手,如果把思路逆转一下,考察这个状态的最优值依赖于哪些状态,就容易许多了。这个状态依赖于哪些状态呢?
首先,在a[i]!=b[j]的时候有F[i][j]=F[i-1][j]。为什么呢?因为F[i][j]是以b[j]为结尾的LCIS,如果F[i][j]>0那么就说明a[1]..a[i]中必然有一个字符a[k]等于b[j](如果F[i][j]等于0呢?那赋值与否都没有什么影响了)。因为a[k]!=a[i],那么a[i]对F[i][j]没有贡献,于是我们不考虑它照样能得出F[i][j]的最优值。所以在a[i]!=b[j]的情况下必然有F[i][j]=F[i-1][j]。这一点参考LCS的处理方法。
那如果a[i]==b[j]呢?首先,这个等于起码保证了长度为1的LCIS。然后我们还需要去找一个最长的且能让b[j]接在其末尾的LCIS。之前最长的LCIS在哪呢?首先我们要去找的F数组的第一维必然是i-1。因为i已经拿去和b[j]配对去了,不能用了。并且也不能是i-2,因为i-1必然比i-2更优。第二维呢?那就需要枚举b[1]..b[j-1]了,因为你不知道这里面哪个最长且哪个小于b[j]。这里还有一个问题,可不可能不配对呢?也就是在a[i]==b[j]的情况下,需不需要考虑F[i][j]=F[i-1][j]的决策呢?答案是不需要。因为如果b[j]不和a[i]配对,那就是和之前的a[1]..a[j-1]配对(假设F[i-1][j]>0,等于0不考虑),这样必然没有和a[i]配对优越。(为什么必然呢?因为b[j]和a[i]配对之后的转移是max(F[i-1][k])+1,而和之前的i配对则是max(F[i-1][k])+1。显然有F[i][j]>F[i][j],i>i) 于是我们得出了状态转移方程:
a[i]!=b[j]: F[i][j]=F[i-1][j]
a[i]==b[j]: F[i][j]=max(F[i-1][k])+1 1<=k<=j-1&&b[j]>b[k]
不难看到,这是一个时间复杂度为O(n^3)的DP,离平方还有一段距离。
但是,这个算法最关键的是,如果按照一个合理的递推顺序,max(F[i-1][k])的值我们可以在之前访问F[i][k]的时候通过维护更新一个max变量得到。怎么得到呢?首先递推的顺序必须是状态的第一维在外层循环,第二维在内层循环。也就是算好了F[1][len(b)]再去算F[2][1]。 如果按照这个递推顺序我们可以在每次外层循环的开始加上令一个max变量为0,然后开始内层循环。当a[i]>b[j]的时候令max=F[i-1][j]。如果循环到了a[i]==b[j]的时候,则令F[i][j]=max+1。
最后答案是F[len(a)][1]..F[len(a)][len(b)]的最大值。 参考代码:

int f[1005][1005],a[1005],b[1005],i,j,t,n1,n2,max;
int main()
{
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n1,&n2);
        for(i=1; i<=n1; i++) 
            scanf("%d",&a[i]);
        for(i=1; i<=n2; i++) 
            scanf("%d",&b[i]);
        memset(f,0,sizeof(f));

//        a[i]!=b[j]:   F[i][j]=F[i-1][j]
//        a[i]==b[j]:   F[i][j]=max(F[i-1][k])+1(1<=k<=j-1&&b[j]>b[k])

        //如果按照一个合理的递推顺序,
        //max(F[i-1][k])的值我们可以在之前访问F[i][k]的时候,
        //通过维护更新一个max变量得到。
        for(i=1; i<=n1; i++)
        {
            max=0;
            for(j=1; j<=n2; j++)
            {
                f[i][j]=f[i-1][j];           //可判断也可不判断
                if (a[i]>b[j]&&max<f[i-1][j])//max一直是f[i][j]下更新
                    max=f[i-1][j];
                if (a[i]==b[j])
                    f[i][j]=max+1;
            }
        }
        max=0;
        for(i=1; i<=n2; i++)
            if (max<f[n1][i]) 
                max=f[n1][i];
        printf("%d\n",max);
    }
}



其实还有一个很风骚的一维的算法。在此基础上压掉了一维空间(时间还是平方)。i循环到x的时候,F[i]表示原来F[x][j]。之所以可以这样,是因为如果a[i]!=b[j],因为F[x][j]=F[x-1][j]值不变,F[x]不用改变,沿用过去的就好了,和这个比较维护更新得到的max值依然是我们要的。而a[i]==b[j]的时候,就改变F[x]的值好了。具体结合代码理解。 参考代码:

int f[1005],a[1005],b[1005],i,j,t,n1,n2,max;
int main()
{
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n1,&n2);
        for(i=1; i<=n1; i++) scanf("%d",&a[i]);
        for(i=1; i<=n2; i++) scanf("%d",&b[i]);
        memset(f,0,sizeof(f));
        for(i=1; i<=n1; i++)
        {
            max=0;
            for(j=1; j<=n2; j++)
            {
                if (a[i]>b[j]&&max<f[j])
                    max=f[j];
                if (a[i]==b[j]) f[j]=max+1;
            }
        }
        max=0;
        for(i=1; i<=n2; i++) 
            if (max<f[i]) 
                max=f[i];
        printf("%d\n",max);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值