Codeforces 1324F Maximum White Subtree(树形dp)

传送门

题意:给一棵n个点的已黑白染色的图,对于每个点,求出一个包含它的,白点个数与黑点个数差值最大的连通图

题解:定义f[p]表示p点的子树(题目中的"subtree"其实是连通图而非子树)内包含p点的白点个数与黑点个数差值最大值。从下往上更新f值,如果S是p的儿子集合,那么

f[p]=\sum_{v\in S}max(f[v],0)

定义g[p]表示p点往上能拓展的连通图白点个数与黑点个数差值最大值,定义ans[p]=f[p]+g[p]。从上往下更新g值,如果v是p的儿子,那么

g[v]=max(0,ans[p]-max(0,f[v]]))

相当于用父亲节点的答案减去当前点子树的贡献。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=2e5+4;
int n,a[N];
struct Edge {
	int v,nxt;
}e[N<<1];
int head[N],etot;
int f[N],g[N],ans[N];
inline int read() {
	int x=0,f=1;char c=getchar();
	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
	while (c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
	return x*f;
}
inline void adde(int u,int v) {
	e[++etot].nxt=head[u],e[etot].v=v,head[u]=etot;
}
inline void smax(int &x,int y) {
	x=x<y?y:x;
}
inline void dfs1(int p,int fa) {
	f[p]=a[p];
	for (int i=head[p];~i;i=e[i].nxt) {
		int v=e[i].v;
		if (v^fa) {
			dfs1(v,p);
			f[p]+=max(f[v],0);
		}
	}
}
inline void dfs2(int p,int fa) {
	ans[p]=f[p]+g[p];
	for (int i=head[p];~i;i=e[i].nxt) {
		int v=e[i].v;
		if (v^fa) {
			g[v]=max(0,ans[p]-max(0,f[v]));
			dfs2(v,p);
		}
	}
}
int main() {
	memset(head,-1,sizeof(head));
	n=read();
	for (register int i=1;i<=n;++i) {
		a[i]=read();
		if (!a[i]) a[i]=-1;
	}
	for (register int i=1;i<n;++i) {
		int u=read(),v=read();
		adde(u,v);
		adde(v,u);
	}
	dfs1(1,0);
	dfs2(1,0);
	for (register int i=1;i<=n;++i)
		printf("%d ",ans[i]);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值