Codeforces 888E Maximum Subsequence(折半搜索)

传送门

题意:在n个数里选m若干个使得它们之和mod m最大,n<=35

题解:直接搜复杂度为O(2^{35})会炸,所以尝试折半搜索,左右两边复杂度不超过O(2^{18}),可以接受,搜出来的和记录在两个数组里,然后尝试凑出一个最大的。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=40;
const int M=3e5+4;
int n;
ll m;
ll a[N];
ll s[2][M];
int l[2],r[2],t[2];
inline int read() {
	int x=0,f=1;char c=getchar();
	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
	while (c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
	return x*f;
}
inline void dfs(int lf,int rg,int cur,ll sum,int id) {
	if (cur==rg+1) {
//		printf("%d %d %d %d %d\n",lf,rg,cur,sum,id);
		++t[id];
		s[id][t[id]]=sum;
		return ;
	}
	dfs(lf,rg,cur+1,(sum+a[cur])%m,id);
	dfs(lf,rg,cur+1,sum,id);
}
inline void smax(ll &x,ll y) {
	x=x<y?y:x;
}
int main() {
//	freopen("in.txt","r",stdin);
	n=read(),m=read();
	for (int i=1;i<=n;++i) a[i]=read()%m;
	l[0]=1,r[0]=n>>1;
	l[1]=r[0]+1,r[1]=n;
	dfs(l[0],r[0],l[0],0,0);
	dfs(l[1],r[1],l[1],0,1);
	sort(s[0]+1,s[0]+t[0]+1);
	sort(s[1]+1,s[1]+t[1]+1);
	ll ans=0;
	for (register int i=1;i<=t[0];++i) {
		ll res=(m-s[0][i]-1+m)%m;
		int pos=upper_bound(s[1]+1,s[1]+t[1]+1,res)-s[1]-1;
		if (pos<0) pos+=t[1];
		smax(ans,(s[0][i]+s[1][pos])%m);
	}
	cout<<ans<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值