题意:给一棵n个点,边被黑白染色的树,问有多少对点对满足从x沿最短路径走到y,经过白边(1-edges)后不经过黑边(0-edges)。
题解:开两个并查集,第一个只连黑边,第二个只连白边,讨论三种路径:①黑②白③黑转白。前两种在并查集merge的时候可以计算,第三种路径怎么搞?对于某个点x,经过它的第三种路径有条。为什么这么不会算重,因为树是没有环的(脑补一下似乎没毛病)。
做完发现可以不用讨论,直接。减去那个1就是去掉(pos, pos)这条路径。
WA了好久发现应该find的地方写成了直接调用fa数组......
P.S. 好像也可以树形dp搞
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=2e5+4;
int n;
int fa[2][N],siz[2][N];
ll ans;
struct Edge {
int u,v,c;
}e[N];
inline int read() {
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
return x*f;
}
inline int find(int x,int c) {
return fa[c][x]==x?x:fa[c][x]=find(fa[c][x],c);
}
inline void merge(int u,int v,int c) {
int fu=find(v,c),fv=find(u,c);
if (fu^fv) {
ans+=2ll*siz[c][fu]*siz[c][fv];
fa[c][fu]=fv;
siz[c][fv]+=siz[c][fu];
}
}
int main() {
n=read();
for (register int i=1;i<=n;++i) {
fa[0][i]=fa[1][i]=i;
siz[0][i]=siz[1][i]=1;
}
for (register int i=1;i<n;++i) {
e[i].u=read();
e[i].v=read();
e[i].c=read();
merge(e[i].u,e[i].v,e[i].c);
}
for (register int i=1;i<=n;++i) {
int a=find(i,0),b=find(i,1);
// ans+=1ll*siz[0][a]*siz[1][b]-1;
ans+=1ll*(siz[0][a]-1)*(siz[1][b]-1);
}
cout<<ans<<endl;
return 0;
}