传送门
题解1:
在维护并查集同时,维护一个关系域!(好像就是传说中的带权并查集?!)
rel[x]表示点x与x所在子树的根的关系,0是同类,1是被吃,2是吃。利用矢量思想,将关系域看成一个x指向root[x]的矢量(太精妙了可惜不是自己想出来的。。。),在合并和判断时可以直接加减。
注意:传参时type-1是为了方便判断(x,y)同类。但是要注意,合并(x,y)时有向的,传参-1的话矢量x->y要转成y->x,所以Merge中+type还是-type要想清楚。
下面自己画了一张图示意图(左边是judge,右边是union,两个操作都在Merge(x,y,type)函数中进行),我也不知道自己拿笔记本触摸板画图是什么心态。。。有点丑,意会就好┌( ಠ_ಠ)┘
#include<bits/stdc++.h>
using namespace std;
const int MAXN=5e4+2;
int n,k,fa[MAXN],rel[MAXN],sum=0;
inline int read() {
int x=0;char c=getchar();
while (c<'0'||c>'9') c=getchar();
while (c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
return x;
}
int find(int x) {
if (x^fa[x]) {
int temp=find(fa[x]);
rel[x]=(rel[x]+rel[fa[x]])%3;//update relations first
fa[x]=temp;//then contract the path
}
return fa[x];
}
bool Merge(int x,int y,int type) {
int fx=find(x),fy=find(y);
if (fx==fy) return (rel[y]-rel[x]+3)%3==type;
fa[fy]=fx;
rel[fy]=(rel[x]-rel[y]+type+3)%3;
return true;
}
int main() {
// freopen("P2024.in","r",stdin);
n=read(),k=read();
for (register int i=1;i<=n;++i) fa[i]=i,rel[i]=0;
for (register int i=0;i<k;++i) {
int opt=read(),x=read(),y=read();
if (x>n||y>n||(x==y&&opt==2)) {++sum;continue;}
if (!Merge(x,y,opt-1)) ++sum;//opt->opt-1:x to y->y to x
}
printf("%d\n",sum);
return 0;
}
题解2:
拆点(1个拆成3个)维护并查集,别人的代码,实测能过,先扔在这儿以后遇到类似的再研究。
代码来自:http://blog.csdn.net/gemire/article/details/20566907
#include<iostream>
#include<vector>
#include<algorithm>
#include<functional>
#include<iterator>
#include<cstdio>
#include<queue>
using namespace std;
//并查集
const int MAX_N = 50010;
const int MAX_K = 100010;
int set[MAX_N*3];//父亲
int height[MAX_N*3];//树的高度
int T[MAX_K],X[MAX_K],Y[MAX_K];
//并查集
//初始化n个元素
void init(int n)
{
for (int i = 0; i < n; i++)
{
set[i] = i;//set[x]==x时,x是所在树的根
height[i] = 0;
}
}
//查 查询x所在树的根
int cha(int x)
{
int r = x;
while (set[r] != r)
r = set[r];
int i = x;
int j(0);
while (i != r)//路径压缩
{
j = set[i];
set[i] = r;
i = j;
}
return r;
}
//并 合并x和y所属的集合
void unite(int x, int y)
{
x = cha(x);
y = cha(y);
if (x == y)
return ;
if (height[x] < height[y])
{
set[x] = y;
}
else
{
set[y] = x;
if (height[x] == height[y])
height[x]++;
}
}
//判断x和y是否属于同一个集合
bool same(int x, int y)
{
return cha(x) == cha(y);
}
int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("D:\\in.txt", "r", stdin);
freopen("D:\\out.txt", "w", stdout);
#endif // ONLINE_JUDEG
int n(0), k(0);
int ans(0);
scanf("%d%d", &n, &k);
for (int i = 0; i < k; i++)
{
scanf("%d%d%d", &T[i], &X[i], &Y[i]);
}
//初始化并查集,元素x,x+n,x+2*n分别代表x-A,x-B,x-C
init(n * 3);
ans = 0;
for (int i = 0; i < k; i++)
{
int t = T[i];//信息的类型
int x = X[i] - 1;
int y = Y[i] - 1;//把输入变成0--N-1的范围
//不正确的编号
if (x < 0 || y < 0 || x >= n || y >= n)
{
ans++;
continue;
}
if (t == 1)//“x 和 y 属于同一类”的信息
{
if (same(x,y+n)||same(x,y+2*n))
{
ans++;
}
else
{
unite(x, y);
unite(x + n, y + n);
unite(x + n * 2, y + n * 2);
}
}
else// "x吃y的信息"
{
if (same(x, y) || same(x, y + 2 * n))
{
ans++;
}
else
{
unite(x, y + n);
unite(x + n, y + 2 * n);
unite(x + 2 * n, y);
}
}
}
printf("%d\n", ans);
return 0;
}