传送门
新技能get:为没有mod的组合数创造mod,然后使用Lucas定理
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MOD=999911659;
ll p[4]={2,3,4679,35617};
ll fac[4][36000],g;
ll d[36000],a[36000];int tot=0;
int n;
inline void init(int j) {
fac[j][0]=fac[j][1]=1;
for (int i=2;i<p[j];++i)
fac[j][i]=fac[j][i-1]*i%p[j];
}
ll fpow(ll a,ll b,ll p) {
ll ret=1;
while (b) {
if (b&1) ret=ret*a%p;
b>>=1,a=a*a%p;
}
return ret;
}
ll lucas(int i,ll n,ll m) {
ll ret=1;
while (n&&m) {
ll nn=n%p[i],mm=m%p[i];
if (nn<mm) return 0;
ret=ret*fac[i][nn]%p[i]*fpow(fac[i][nn-mm]*fac[i][mm]%p[i],p[i]-2,p[i])%p[i];
n/=p[i],m/=p[i];
}
return ret;
}
ll exgcd(ll a,ll b,ll &x,ll &y) {
if (!b) {
x=1,y=0;
return a;
}
ll d=exgcd(b,a%b,y,x);
y-=(a/b)*x;
return d;
}
ll CRT(int n,ll a[],ll p[]) {
ll M=1;
for (int i=0;i<n;++i) M*=p[i];
ll ret=0;
for (int i=0;i<n;++i) {
ll w=M/p[i],x,y;
ll d=exgcd(w,p[i],x,y);
ret=(ret+x*w%M*a[i]%M)%M;
}
return (ret+M)%M;
}
int main() {
scanf("%d%lld",&n,&g);
if (g==MOD) {puts("0");return 0;}
for (int i=1;i*i<=n;++i)
if (n%i==0) {
if (i*i==n) d[++tot]=i;
else d[++tot]=i,d[++tot]=n/i;
}
for (int j=0;j<4;++j) init(j);
for (int j=1;j<=tot;++j) {
for (int i=0;i<4;++i)
a[i]+=lucas(i,n,d[j]),a[i]%=p[i];
}
ll ans=CRT(4,a,p);
printf("%lld\n",fpow(g,ans,MOD));
return 0;
}