bzoj 1801(递推)

版权声明:要转载的小伙伴请注明一下,欢迎交流(^_^) https://blog.csdn.net/KGV093/article/details/78085061

传送门
题解:状压dp只能得部分分,所以(有大佬)考虑dp[i][j][k]表示前i行有j列放了一个炮,k列放了两个炮。(这样刚好可以表示所有状态orzorz)然后分6种情况递推,最后把前n行所有合法情况加起来即可。(0表示列上没有炮,1表示有1个炮)
P.S.一开始死活弄不懂为什么dp[i][j][k]可以从dp[i-1][j+1][k-1]转移(为什么要+1???),后来发现”+1”就是此时放置一个新的炮得那一列,放完后,一个炮的列数就会-1,从而j+1变成当前枚举的j!
又一次智商被碾压orz( _ _)ノ|扶墙

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MOD=9999973;
int n,m;
ll dp[102][102][102],ans=0;
inline ll C2(int x) {
    return x*(x-1)>>1;
}
int main() {
    scanf("%d%d",&n,&m);
    dp[0][0][0]=1;
    for (int i=1;i<=n;++i)
        for (int j=0;j<=m;++j)
            for (int k=0;k<=m-j;++k) {
                dp[i][j][k]=dp[i-1][j][k];//不放
                if (j)          dp[i][j][k]=(dp[i][j][k]+dp[i-1][j-1][k]*(m-j-k+1))%MOD;//放在0上
                if (k&&j<m)     dp[i][j][k]=(dp[i][j][k]+dp[i-1][j+1][k-1]*(j+1))%MOD;//放在1上
                if (j>1)        dp[i][j][k]=(dp[i][j][k]+dp[i-1][j-2][k]*C2(m-j-k+2))%MOD;//放在0 0上
                if (k)          dp[i][j][k]=(dp[i][j][k]+dp[i-1][j][k-1]*(m-j-k+1)*j)%MOD;//放在0 1上
                if (k>1&&j<m-1) dp[i][j][k]=(dp[i][j][k]+dp[i-1][j+2][k-2]*C2(j+2))%MOD;//放在1 1上
            }
    for (int j=0;j<=m;++j)
        for (int k=0;k<=m-j;++k)
            ans+=dp[n][j][k],ans%=MOD;
    printf("%lld\n",ans);
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页