Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ... n.
Example:
Input: 3 Output: [ [1,null,3,2], [3,2,null,1], [3,1,null,null,2], [2,1,3], [1,null,2,null,3] ] Explanation: The above output corresponds to the 5 unique BST's shown below: 1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
题解:给出一个序列的所有BST集合,本题可以用递归或dp解决,递归主要转化为子问题,因为要保证bst所以从一个递增序列进行分割,每次从1到n找一个数k然后分成左右两个子树,只需新建k节点两个子树递归解决
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<TreeNode*> generateTrees(int n) {
if(n==0) return vector<TreeNode*>();
return dfs(1,n);
}
vector<TreeNode*> dfs(int st,int ed){
vector<TreeNode*> res;
if(st>ed) {
res.push_back(nullptr);
return res;
}
for(int k=st;k<=ed;k++)
{
vector<TreeNode*> ll=dfs(st,k-1);
vector<TreeNode*> lr=dfs(k+1,ed);
for(int i=0;i<ll.size();i++)
for(int j=0;j<lr.size();j++){
TreeNode* root=new TreeNode(k);
root->left=ll[i];
root->right=lr[j];
res.push_back(root);
}
}
return res;
}
};