【LeetCode】Maximal Rectangle

25 篇文章 0 订阅
18 篇文章 0 订阅

Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.

Example:

Input:
[
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
]
Output: 6

题解:dp问题,但是情况比最大正方形复杂,答案是利用之前最大直方图的结论,这种方法就是一行一行遍历然后维护一个height数组记录当前行的高度遇到0则置为0,否则自增,然后调用之前结论遍历出ans;进一步优化就是,每行维护两个数组一个left一个right,用来记录当前点最左和最右的1的位置,从而当前的节点所在矩形面积可以用(right[i]-left[i])*height[j]表示,每一层的right[i]更新前应该看成right[i][j-1],这关系到能否形成矩形,也就是必须保证每个点高度优先,以最高为主,所以需要用到上一层的left和right数组来记录上层的宽度,代码:

class Solution {
public:
    int maximalRectangle(vector<vector<char>>& matrix) {
        if (matrix.empty() || matrix[0].empty()) return 0;
        int res = 0, m = matrix.size(), n = matrix[0].size();
        vector<int> height(n, 0), left(n, 0), right(n, n);
        for (int i = 0; i < m; ++i) {
            int cur_left = 0, cur_right = n;
            for (int j = 0; j < n; ++j) {
                if (matrix[i][j] == '1') {
                    ++height[j];
                    left[j] = max(left[j], cur_left);
                } else {
                    height[j] = 0;
                    left[j] = 0;
                    cur_left = j + 1;
                }
            }
            for (int j = n - 1; j >= 0; --j) {
                if (matrix[i][j] == '1') {
                    right[j] = min(right[j], cur_right);
                } else {
                    right[j] = n;
                    cur_right = j;
                }
                res = max(res, (right[j] - left[j]) * height[j]);
            }
        }
        return res;
    }
};

利用两指针的思想,一个指针维护左边第一个1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值