Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.
Example:
Input:
[
["1","0","1","0","0"],
["1","0","1","1","1"],
["1","1","1","1","1"],
["1","0","0","1","0"]
]
Output: 6
题解:dp问题,但是情况比最大正方形复杂,答案是利用之前最大直方图的结论,这种方法就是一行一行遍历然后维护一个height数组记录当前行的高度遇到0则置为0,否则自增,然后调用之前结论遍历出ans;进一步优化就是,每行维护两个数组一个left一个right,用来记录当前点最左和最右的1的位置,从而当前的节点所在矩形面积可以用(right[i]-left[i])*height[j]表示,每一层的right[i]更新前应该看成right[i][j-1],这关系到能否形成矩形,也就是必须保证每个点高度优先,以最高为主,所以需要用到上一层的left和right数组来记录上层的宽度,代码:
class Solution {
public:
int maximalRectangle(vector<vector<char>>& matrix) {
if (matrix.empty() || matrix[0].empty()) return 0;
int res = 0, m = matrix.size(), n = matrix[0].size();
vector<int> height(n, 0), left(n, 0), right(n, n);
for (int i = 0; i < m; ++i) {
int cur_left = 0, cur_right = n;
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == '1') {
++height[j];
left[j] = max(left[j], cur_left);
} else {
height[j] = 0;
left[j] = 0;
cur_left = j + 1;
}
}
for (int j = n - 1; j >= 0; --j) {
if (matrix[i][j] == '1') {
right[j] = min(right[j], cur_right);
} else {
right[j] = n;
cur_right = j;
}
res = max(res, (right[j] - left[j]) * height[j]);
}
}
return res;
}
};
利用两指针的思想,一个指针维护左边第一个1