文献研读及公式推导-推导电压的二次式,并建立AR模型,预测电压数据

1. 文献来源

文献来源:Dynamic State Prediction Based on Auto- Regressive (AR) Model Using PMU Data

2. 文献公式推导

文献中公式(2)-(10)(与本文的公式编号不是对应的),具体文献中公式,查看具体文献。
在这里插入图片描述
在这里插入图片描述
V 1 ˙ − V 2 ˙ = 1 − I ˙ ( j X ) ⇒ 1 − ( x + j y ) = I ˙ ( j X ) (1) \dot{V_{1}}-\dot{V_{2}}=1-\dot{I}(jX)\Rightarrow1-(x+jy)=\dot{I}(jX)\tag{1} V1˙V2˙=1I˙(jX)1(x+jy)=I˙(jX)(1) S D = V 2 I ˙ ∗ ⇒ ( 1 + j β ) t = ( x + j y ) I ˙ ∗ (2) S_{D}=V_{2}\dot{I}^{*}\Rightarrow(1+j\beta)t=(x+jy)\dot{I}^{*}\tag{2} SD=V2I˙(1+jβ)t=(x+jy)I˙(2)

I ˙ = − y X + ( x − 1 ) X j (3) \dot{I}=-\frac{y}{X}+\frac{(x-1)}{X}j\tag{3} I˙=Xy+X(x1)j(3) I ˙ ∗ = − y X − ( x − 1 ) X j = ( 1 + j β ) t x + j y (4) \dot{I}^{*}=-\frac{y}{X}-\frac{(x-1)}{X}j=\frac{(1+j\beta)t}{x+jy}\tag{4} I˙=XyX(x1)j=x+jy(1+jβ)t(4)
求解可得:
y = − X t (4a) y=-Xt\tag{4a} y=Xt(4a) x 2 − x + y 2 + β x t = 0 (4b) x^2-x+y^2+\beta xt=0\tag{4b} x2x+y2+βxt=0(4b) x 2 − x + X 2 t 2 + X β t = 0 (4c) x^2-x+X^2t^2+X\beta t=0\tag{4c} x2x+X2t2+Xβt=0(4c)
由式(4a)-(4c)可得,电压与时间成二次关系式:
V k ( t ) ≈ a k + b k t + c k t 2 (5) V_{k}(t) \approx a_{k}+b_{k} t+c_{k} t^{2}\tag{5} Vk(t)ak+bkt+ckt2(5)

3. AR模型

自回归模型(英语:Autoregressive model,简称AR模型),是统计上一种处理时间序列的方法,用同一变数例如x的之前各期,亦即x1至xt-1来预测本期xt的表现,并假设它们为一线性关系。因为这是从回归分析中的线性回归发展而来,只是不用x预测y,而是用x预测 x(自己);所以叫做自回归。

  自回归(AR)模型是一种时间序列分析,广泛应用于预测的各个领域,如信号处理、状态估计、控制、模式识别等。用 A R ( m ) AR(m) AR(m)表示的m阶一般自回归模型定义如下所示。
y t = α 1 y t − 1 + α 2 y t − 2 + … + α m y t − m + ω t , t = m + 1 , … , n (6) y_{t}=\alpha_{1} y_{t-1}+\alpha_{2} y_{t-2}+\ldots+\alpha_{m} y_{t-m}+\omega_{t}, \quad t=m+1, \ldots, n\tag{6} yt=α1yt1+α2yt2++αmytm+ωt,t=m+1,,n(6)
其中 y 1 y_{1} y1 y 2 y_{2} y2,…, y n y_{n} yn是时间序列数据,m是AR模型的阶数 α 1 \alpha_{1} α1 α 2 \alpha_{2} α2,…, α n \alpha_{n} αn是AR模型的相应参数, ω t ωt ωt表示白噪声。

4. 插值多项式与范德蒙矩阵

  多项式广泛用于逼近复杂曲线,多项式插值对于执行次二次乘法至关重要[6]。给定一个m-1次多项式,它可以写成(7)中所示的形式,并在插值后获得具有系数的线性方程组,如(8)所示。
y ( t ) = a m − 1 t m − 1 + a m − 2 t m − 2 + … + a 1 t + a 0 (7) y(t)=a_{m-1} t^{m-1}+a_{m-2} t^{m-2}+\ldots+a_{1} t+a_{0}\tag{7} y(t)=am1tm1+am2tm2++a1t+a0(7) [ y ( 1 ) y ( 2 ) ⋮ y ( m ) ] = [ 1 1 ⋯ 1 m − 1 1 2 ⋯ 2 m − 1 ⋮ ⋮ ⋱ ⋮ 1 m ⋯ m m − 1 ] [ a 0 a 1 ⋮ a m − 1 ] (8) {\left[\begin{array}{c} y(1) \\y(2) \\\vdots \\y(m)\end{array}\right]=\left[\begin{array}{cccc}1 & 1 & \cdots & 1^{m-1} \\1 & 2 & \cdots & 2^{m-1} \\\vdots & \vdots & \ddots & \vdots \\1 & m & \cdots & m^{m-1}\end{array}\right]\left[\begin{array}{c}a_{0} \\a_{1} \\\vdots \\a_{m-1}\end{array}\right]}\tag{8} y(1)y(2)y(m) = 11112m1m12m1mm1 a0a1am1 (8)
其中 a 0 a_{0} a0 a 1 a_{1} a1,…, a m − 1 a_{m-1} am1是常数系数。现在,(8)可以用简化形式表示,如(9)所示。
y = V a (9) y=Va\tag{9} y=Va(9)
其中 V V V是范德蒙德矩阵。
  现在,如果 b T = [ b 1 … b m − 1 b m ] b^T=[b_{1}…b_{m-1}b_{m}] bT=[b1bm1bm],表示 V − 1 V^{-1} V1的第一行,那么在(9)的两侧左乘 b T b^T bT时,(9)可以转换为 A R ( m ) AR(m) AR(m)模型形式,如(9)所示。
y ( 0 ) = b 1 y ( 1 ) + … + b m − 1 y ( m − 1 ) + b m y ( m ) (10) y(0)=b_{1} y(1)+\ldots+b_{m-1} y(m-1)+b_{m} y(m)\tag{10} y(0)=b1y(1)++bm1y(m1)+bmy(m)(10)
其中,基于(6), y ( 0 ) y(0) y(0)等于 a 0 a_{0} a0

4.1 范德蒙矩阵求逆

V − 1 = [ ( − 1 ) n − 1 a 2 a 3 ⋯ a n ∏ k = 2 n ( a 1 − a k ) ⋯ ( − 1 ) n − 1 a 1 ⋯ a j − 1 a j + 1 ⋯ a n ∏ k = 1 ( k ≠ j ) n ( a j − a k ) ⋯ ( − 1 ) n − 1 a 1 a 2 ⋯ a n − 1 ∏ k = 1 n − 1 ( a n − a k ) ⋮ ⋱ ⋮ ⋱ ⋮ ( − 1 ) n − i σ n − i ( a 2 , a 3 , ⋯   , a n ) ∏ k = 2 n ( a 1 − a k ) ⋯ ( − 1 ) n − i σ n − i ∏ k = 1 ( k ≠ j ) n ( a j − a k ) ⋯ ( − 1 ) n − i σ n − i ( a 1 , a 2 , ⋯   , a n − 1 ) ∏ k = 1 n − 1 ( a n − a k ) ⋮ ⋱ ⋮ ⋱ ⋮ 1 ∏ k = 2 n ( a 1 − a k ) ⋯ 1 ∏ k = 1 ( k ≠ j ) n ( a j − a k ) ⋯ 1 ∏ k = 1 n − 1 ( a n n − a k ) ] (11) \begin{array}{l} \mathbf{V}^{-1}= \\ {\left[\begin{array}{ccccc} \frac{(-1)^{n-1} a_{2} a_{3} \cdots a_{n}}{\prod_{k=2}^{n}\left(a_{1}-a_{k}\right)} & \cdots & \frac{(-1)^{n-1} a_{1} \cdots a_{j-1} a_{j+1} \cdots a_{n}}{\prod_{k=1(k \neq j)}^{n}\left(a_{j}-a_{k}\right)} & \cdots & \frac{(-1)^{n-1} a_{1} a_{2} \cdots a_{n-1}}{\prod_{k=1}^{n-1}\left(a_{n}-a_{k}\right)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{(-1)^{n-i} \sigma_{n-i}\left(a_{2}, a_{3}, \cdots, a_{n}\right)}{\prod_{k=2}^{n}\left(a_{1}-a_{k}\right)} & \cdots & \frac{(-1)^{n-i} \sigma_{n-i}}{\prod_{k=1(k \neq j)}^{n}\left(a_{j}-a_{k}\right)} & \cdots & \frac{(-1)^{n-i} \sigma_{n-i}\left(a_{1}, a_{2}, \cdots, a_{n-1}\right)}{\prod_{k=1}^{n-1}\left(a_{n}-a_{k}\right)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{1}{\prod_{k=2}^{n}\left(a_{1}-a_{k}\right)} & \cdots & \frac{1}{\prod_{k=1(k \neq j)}^{n}\left(a_{j}-a_{k}\right)} & \cdots & \frac{1}{\prod_{k=1}^{n-1}\left(a_{n n}-a_{k}\right)} \end{array}\right]}\tag{11} \end{array} V1= k=2n(a1ak)(1)n1a2a3ank=2n(a1ak)(1)niσni(a2,a3,,an)k=2n(a1ak)1k=1(k=j)n(ajak)(1)n1a1aj1aj+1ank=1(k=j)n(ajak)(1)niσnik=1(k=j)n(ajak)1k=1n1(anak)(1)n1a1a2an1k=1n1(anak)(1)niσni(a1,a2,,an1)k=1n1(annak)1 (11)
  范德蒙矩阵求逆,有两种方式:

  1. 根据伴随矩阵求解范德蒙矩阵的逆,这是常规求解矩阵的逆的方式。
  2. 利用拉格朗日插值公式求解范德蒙矩阵的逆。
    x 0 , x 1 , . . . , x n x_{0},x_{1},...,x_{n} x0,x1,...,xn是数域K中n+1个不同的数, y 0 , y 1 , . . . , y n y_{0},y_{1},...,y_{n} y0,y1,...,yn∈ K,则 K [ x ] K[x] K[x]中存在唯——个次数不超过n的多项式 f ( x ) f(x) f(x),使得 f ( x x ) = y i f(x_{x})= y_{i} f(xx)=yi
    一般地,令
    f ( x ) = ∑ i = 0 n y i ( x − x 0 ) ⋯ ( x − x i − 1 ) ( x − x i + 1 ) ⋯ ( x − x n ) ( x i − x 0 ) ⋯ ( x i − x i − 1 ) ( x i − x i + 1 ) ⋯ ( x i − x n ) (12) f(x)=\sum_{i=0}^{n} y_{i} \frac{\left(x-x_{0}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{n}\right)}\tag{12} f(x)=i=0nyi(xix0)(xixi1)(xixi+1)(xixn)(xx0)(xxi1)(xxi+1)(xxn)(12)
    d e g f ( x ) < = n degf(x)<=n degf(x)<=n,且 f ( x i ) = y i f(x_{i})=y_{i} f(xi)=yi,次多项式为拉格朗日多项式。
    具体证明过程可参见
    范德蒙矩阵求逆
    范德蒙矩阵根据伴随矩阵求逆
    范德蒙矩阵求逆-根据拉格朗日插值多项式求解
    ,此处不再赘述。

5. 帕斯卡三角(Pascal’s Triangle)

  帕斯卡三角形[8]是一个二维三角形阵列,当n从0到正无穷大变化时,它表示二项式展开的系数, ( x + y ) n (x+y)^n (x+y)n。有趣的是,从Vandermonde矩阵的求逆中获得的,AR模型的系数大小遵循Pascal三角形,如表一所示。
在这里插入图片描述

6. 电压预测的AR模型

  基于Vandermonde矩阵和Pascal三角形,可以实现基于先验估计的所有二次电压预测,如(13)所示。
y ( n ) = 3 y ( n − 1 ) − 3 y ( n − 2 ) + y ( n − 3 ) (13) y(n)=3 y(n-1)-3 y(n-2)+y(n-3)\tag{13} y(n)=3y(n1)3y(n2)+y(n3)(13)
其中, y ( n ) y(n) y(n) y ( n − 1 ) y(n-1) y(n1), y ( n − 2 ) y(n-2) y(n2), y ( n − 3 ) y(n-3) y(n3)是复母线电压.
  在MATLAB中还可以得出,用于预测下一组电压测量的AR模型基于这三个先验估计。这一推断也有更深层的影响。在(5)中,发现随着负载线性增加,电压具有二次轨迹。现在,如果负荷增加是二次的而不是线性的,AR模型仍然适用于预测下一组电压测量值,但预测将基于更多的先验估计,以及通过沿帕斯卡三角形向下移动找到的相应系数的幅值。

7. 推导思路

由式(4c)可知,电压与时间序列呈二次关系式:
x 2 − x + X 2 t 2 + X β t = 0 (4c) x^2-x+X^2t^2+X\beta t=0\tag{4c} x2x+X2t2+Xβt=0(4c)
则可写成式(5)一般形式:
V k ( t ) ≈ a k + b k t + c k t 2 (5) V_{k}(t) \approx a_{k}+b_{k} t+c_{k} t^{2}\tag{5} Vk(t)ak+bkt+ckt2(5)
为了凑出AR模型的形式,想到得到形如式(6)的AR一般式,现在某时刻的值可以由过去时刻预测得到:
y t = α 1 y t − 1 + α 2 y t − 2 + … + α m y t − m + ω t , t = m + 1 , … , n (6) y_{t}=\alpha_{1} y_{t-1}+\alpha_{2} y_{t-2}+\ldots+\alpha_{m} y_{t-m}+\omega_{t}, \quad t=m+1, \ldots, n\tag{6} yt=α1yt1+α2yt2++αmytm+ωt,t=m+1,,n(6)
将式(5)写成更一般的形式,如式(7):
y ( t ) = a m − 1 t m − 1 + a m − 2 t m − 2 + … + a 1 t + a 0 (7) y(t)=a_{m-1} t^{m-1}+a_{m-2} t^{m-2}+\ldots+a_{1} t+a_{0}\tag{7} y(t)=am1tm1+am2tm2++a1t+a0(7)
式(7)可以写成式(8)范德蒙矩阵:
y ( t ) = a m − 1 t m − 1 + a m − 2 t m − 2 + … + a 1 t + a 0 (7) y(t)=a_{m-1} t^{m-1}+a_{m-2} t^{m-2}+\ldots+a_{1} t+a_{0}\tag{7} y(t)=am1tm1+am2tm2++a1t+a0(7) [ y ( 1 ) y ( 2 ) ⋮ y ( m ) ] = [ 1 1 ⋯ 1 m − 1 1 2 ⋯ 2 m − 1 ⋮ ⋮ ⋱ ⋮ 1 m ⋯ m m − 1 ] [ a 0 a 1 ⋮ a m − 1 ] (8) {\left[\begin{array}{c} y(1) \\y(2) \\\vdots \\y(m)\end{array}\right]=\left[\begin{array}{cccc}1 & 1 & \cdots & 1^{m-1} \\1 & 2 & \cdots & 2^{m-1} \\\vdots & \vdots & \ddots & \vdots \\1 & m & \cdots & m^{m-1}\end{array}\right]\left[\begin{array}{c}a_{0} \\a_{1} \\\vdots \\a_{m-1}\end{array}\right]}\tag{8} y(1)y(2)y(m) = 11112m1m12m1mm1 a0a1am1 (8) y = V a (9) y=Va\tag{9} y=Va(9)
对范德蒙矩阵求逆可得式(11):
V − 1 = [ ( − 1 ) n − 1 a 2 a 3 ⋯ a n ∏ k = 2 n ( a 1 − a k ) ⋯ ( − 1 ) n − 1 a 1 ⋯ a j − 1 a j + 1 ⋯ a n ∏ k = 1 ( k ≠ j ) n ( a j − a k ) ⋯ ( − 1 ) n − 1 a 1 a 2 ⋯ a n − 1 ∏ k = 1 n − 1 ( a n − a k ) ⋮ ⋱ ⋮ ⋱ ⋮ ( − 1 ) n − i σ n − i ( a 2 , a 3 , ⋯   , a n ) ∏ k = 2 n ( a 1 − a k ) ⋯ ( − 1 ) n − i σ n − i ∏ k = 1 ( k ≠ j ) n ( a j − a k ) ⋯ ( − 1 ) n − i σ n − i ( a 1 , a 2 , ⋯   , a n − 1 ) ∏ k = 1 n − 1 ( a n − a k ) ⋮ ⋱ ⋮ ⋱ ⋮ 1 ∏ k = 2 n ( a 1 − a k ) ⋯ 1 ∏ k = 1 ( k ≠ j ) n ( a j − a k ) ⋯ 1 ∏ k = 1 n − 1 ( a n n − a k ) ] (11) \begin{array}{l} \mathbf{V}^{-1}= \\ {\left[\begin{array}{ccccc} \frac{(-1)^{n-1} a_{2} a_{3} \cdots a_{n}}{\prod_{k=2}^{n}\left(a_{1}-a_{k}\right)} & \cdots & \frac{(-1)^{n-1} a_{1} \cdots a_{j-1} a_{j+1} \cdots a_{n}}{\prod_{k=1(k \neq j)}^{n}\left(a_{j}-a_{k}\right)} & \cdots & \frac{(-1)^{n-1} a_{1} a_{2} \cdots a_{n-1}}{\prod_{k=1}^{n-1}\left(a_{n}-a_{k}\right)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{(-1)^{n-i} \sigma_{n-i}\left(a_{2}, a_{3}, \cdots, a_{n}\right)}{\prod_{k=2}^{n}\left(a_{1}-a_{k}\right)} & \cdots & \frac{(-1)^{n-i} \sigma_{n-i}}{\prod_{k=1(k \neq j)}^{n}\left(a_{j}-a_{k}\right)} & \cdots & \frac{(-1)^{n-i} \sigma_{n-i}\left(a_{1}, a_{2}, \cdots, a_{n-1}\right)}{\prod_{k=1}^{n-1}\left(a_{n}-a_{k}\right)} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{1}{\prod_{k=2}^{n}\left(a_{1}-a_{k}\right)} & \cdots & \frac{1}{\prod_{k=1(k \neq j)}^{n}\left(a_{j}-a_{k}\right)} & \cdots & \frac{1}{\prod_{k=1}^{n-1}\left(a_{n n}-a_{k}\right)} \end{array}\right]}\tag{11} \end{array} V1= k=2n(a1ak)(1)n1a2a3ank=2n(a1ak)(1)niσni(a2,a3,,an)k=2n(a1ak)1k=1(k=j)n(ajak)(1)n1a1aj1aj+1ank=1(k=j)n(ajak)(1)niσnik=1(k=j)n(ajak)1k=1n1(anak)(1)n1a1a2an1k=1n1(anak)(1)niσni(a1,a2,,an1)k=1n1(annak)1 (11)
式(9)两边左乘 V − 1 V^{-1} V1得到式(14):
V − 1 y = a (9) V^{-1}y=a\tag{9} V1y=a(9)
再回到式(5)和式(7)本身,电压与时间是二次关系式,及时间的最高次 t m − 1 = t 2 ⇒ m = 3 t^{m-1}=t^2\Rightarrow m=3 tm1=t2m=3
式(7)可以写成: y ( t ) = a 2 t 2 + a 1 t 1 + a 0 (7) y(t)=a_{2} t^{2}+a_{1} t^{1}+a_{0}\tag{7} y(t)=a2t2+a1t1+a0(7)
范德蒙矩阵:
[ y ( 1 ) y ( 2 ) y ( 3 ) ] = [ 1 1 1 1 2 2 2 1 3 3 2 ] [ a 0 a 1 a 2 ] (8) {\left[\begin{array}{c} y(1) \\y(2) \\y(3)\end{array}\right]=\left[\begin{array}{cccc}1 & 1 & 1 \\1 & 2 &2^{2}\\1 & 3 & 3^{2}\end{array}\right]\left[\begin{array}{c}a_{0} \\a_{1}\\a_{2}\end{array}\right]}\tag{8} y(1)y(2)y(3) = 11112312232 a0a1a2 (8)
V − 1 = [ 3 − 3 1 − 2.5 4 − 1.5 0.5 − 1 0.5 ] (9a) V^{-1}=\begin{bmatrix}3 & -3 & 1 \\-2.5 & 4 & -1.5 \\0.5 & -1 & 0.5\end{bmatrix} \tag{9a} V1= 32.50.534111.50.5 (9a)
有式(9), V − 1 V^{-1} V1第一行乘以 y y y,由式(10)可知 y ( 0 ) = a 0 y(0)=a_{0} y(0)=a0
[ 3 − 3 1   ] ∗ [ y ( 1 ) y ( 2 ) y ( 3 ) ] = a 0 ⇒ 3 y ( 1 ) − 3 y ( 2 ) + y ( 3 ) = y ( 0 ) (9b) \begin{bmatrix} 3 & -3 & 1 \ \end{bmatrix} * \begin{bmatrix} y(1) \\ y(2) \\y(3)\end{bmatrix}=a_{0} \Rightarrow 3y(1)-3y(2)+y(3)=y(0)\tag{9b} [331 ] y(1)y(2)y(3) =a03y(1)3y(2)+y(3)=y(0)(9b)
可得 y ( 3 ) = 3 y ( 2 ) − 3 y ( 1 ) + y ( 0 ) y(3)=3y(2)-3y(1)+y(0) y(3)=3y(2)3y(1)+y(0),即式(13):
y ( n ) = 3 y ( n − 1 ) − 3 y ( n − 2 ) + y ( n − 3 ) (13) y(n)=3 y(n-1)-3 y(n-2)+y(n-3)\tag{13} y(n)=3y(n1)3y(n2)+y(n3)(13)

7.总结

  文献证明了总线电压与时间的二次关系,可将电压构建成时间序列的AR模型,通过建立AR模型,根据过去时间段检测的电压数据对当前时间的电压数据进行预测,这对于后续的控制和相关的数据处理提供了参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值