传送门
观察题目中的公式可以发现,这个题目本质上就是求a的a的a的a的a … (b个) 幂次 % p
直接欧拉降幂,公式如下
根据上面公式,重写下Mod函数即可。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6+7;
int pri[maxn],phi[maxn];
bool npri[maxn];
void getphi()
{
npri[0] = npri[1] = 1;
phi[1] = 1;
for(int i=2;i<maxn;i++)
{
if(!npri[i]) pri[++pri[0]] = i,phi[i] = i-1;
for(int j=1;j<=pri[0] && i*pri[j]<maxn;j++)
{
npri[i*pri[j]] = 1;
if(i%pri[j]) phi[i*pri[j]] = phi[i]*phi[pri[j]];
else
{
phi[i*pri[j]] = phi[i]*pri[j];
break;
}
}
}
}
ll qpow(ll a,ll b,ll p)
{
ll ans = 1;
while(b>0)
{
if(b&1) ans=ans*a>p?ans*a%p+p:ans*a;
b>>=1;
a=a*a>p?a*a%p+p:a*a;
}
return ans;
}
ll cal(ll a,ll b,ll p)
{
if(b==0) return 1;
if(p==1) return 1;
ll tmp = cal(a,b-1,phi[p]);
return qpow(a,tmp,p);
}
int main()
{
int T;
scanf("%d",&T);
getphi();
while(T--)
{
ll a,b,p;
scanf("%lld%lld%lld",&a,&b,&p);
printf("%lld\n",cal(a,b,p)%p);
}
return 0;
}