摄像头行为分析算法 FPN+PAN

摄像头行为分析算法借助3D三维视觉优化算法和人工智能优化算法以及yolo网络模型架构可以支持人员摔倒、剧烈运动、抽烟识别、徘徊滞留、人数超员、区域入侵、睡岗离岗等行为分析。YOLO系列算法是一类典型的one-stage目标检测算法,其利box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好,接下来我们介绍YOLO 系列算法。

在介绍Yolo算法之前,我们回忆下RCNN模型,RCNN模型提出了候选区(Region Proposals)的方法,先从图片中搜索出一些可能存在对象的候选区(Selective Search),大概2000个左右,然后对每个候选区进行对象识别,但处理速度较慢。

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使得其速度与精度都得到了极大的性能提升,具体包括:输入端的Mosaic数据增强、自适应锚框计算、自适应图片缩放操作;基准端的Focus结构与CSP结构;Neck端的SPP与FPN+PAN结构。

 Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer) 
Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adap

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值