北大《推荐系统》课程-基于内容和知识的推荐-算法概述

该文讨论了协同过滤算法的局限性,如冷启动问题和数据稀疏性,并介绍了基于内容的推荐算法作为解决方案。该算法通过分析用户历史行为和项目特性,推荐相似或特性匹配的项目,有效解决上述问题。算法步骤包括项目和用户建模,以及生成推荐列表。基于记忆的预测是产生推荐的一种方法,涉及项目间相似度计算。
摘要由CSDN通过智能技术生成

目录

1、协同过滤的缺陷

2、基于内容的推荐算法思想

3、算法步骤

4、产生推荐的算法

4.1、基于记忆的预测


注:北大刘宏志老师的《推荐系统》课程学习,图片来源于课程PPT和参考书籍

1、协同过滤的缺陷

  • 依赖用户和项目的交互行为数据挖掘;

  • 项目冷启动,短视频、新闻资讯等频繁产生新的项目的,新项目不存在用户和项目交互;

  • 数据稀疏,不活跃用户(反馈行为较少的用户)存在很少的交互行为;

2、基于内容的推荐算法思想

  • 推荐用户过去感兴趣的项目内容相似项目;

  • 推荐用户过去感兴趣项目的特性类似的项目;

可以解决项目冷启动问题、数据稀疏问题。

3、算法步骤

(1)项目建模:项目的结构化特征

(2)用户建模:根据用户历史行为和相关项目信息,刻画用户的偏好特征

(3)生成推荐列表:根据项目特征和用户偏好特征的匹配程度对项目进行排序

 图3.1 基于内容的推荐算法框图

4、产生推荐的算法

包括基于记忆的预测和基于模型的预测

4.1、基于记忆的预测

基于记忆的预测包括两种:TOP-N和评分预测

主要难点在于求项目之间相似度的算法,后面的文章会详细介绍。

 图4.1 基于记忆的产生推荐算法步骤

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KPer_Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值