论文阅读和分析:CorNET Deep Learning Framework for Heart Rate Estimation and Biometric Identification

文章提出了一种名为CorNET的深度学习框架,旨在处理运动伪影导致的PPG信号问题,从而进行心率估计和受试者识别。针对数据不平衡问题(20个受试者的二分类任务),算法通过加权损失函数来调整。输入为长度为1000的原始PPG信号,网络结构和参数对结果产生影响,实验展示了方法的有效性。
摘要由CSDN通过智能技术生成

运动伪影造成的结果:最大谱峰不是心率。

在这里插入图片描述

算法架构:

算法用于解决两个问题:1、使用回归得到心率;2、使用分类识别受试者;

note:识别受试者出现数据不平衡问题,因为是20个受试者做二分类任务:1:19.解决方法是对Loss加权。(the class loss is weighted to offset the class imbalance.)

note:算法的输入是原始PPG信号,长度L=1000.


网络架构:

在这里插入图片描述


网络使用的参数:

在这里插入图片描述


实验结果:

在这里插入图片描述


参考:
CorNET: Deep Learning Framework for PPG-Based Heart Rate Estimation and Biometric Identification in Ambulant Environment

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KPer_Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值