D. Super-Permutation

D. Super-Permutation
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
A permutation is a sequence n
integers, where each integer from 1
to n
appears exactly once. For example, [1]
, [3,5,2,1,4]
, [1,3,2]
are permutations, while [2,3,2]
, [4,3,1]
, [0]
are not.

Given a permutation a
, we construct an array b
, where bi=(a1+a2+ … +ai)modn
.

A permutation of numbers [a1,a2,…,an]
is called a super-permutation if [b1+1,b2+1,…,bn+1]
is also a permutation of length n
.

Grisha became interested whether a super-permutation of length n
exists. Help him solve this non-trivial problem. Output any super-permutation of length n
, if it exists. Otherwise, output −1
.

Input
The first line contains a single integer t
(1≤t≤104
) — the number of test cases. The description of the test cases follows.

Each test case consists of a single line containing one integer n
(1≤n≤2⋅105
) — the length of the desired permutation.

The sum of n
over all test cases does not exceed 2⋅105
.

Output
For each test case, output in a separate line:

n
integers — a super-permutation of length n
, if it exists.
−1
, otherwise.
If there are several suitable permutations, output any of them.

Example
inputCopy
4
1
2
3
6
outputCopy
1
2 1
-1
6 5 2 3 4 1

一道很有意思的找规律题

#include <bits/stdc++.h>
 
using namespace std;
 
int main() {
    int q;
    cin >> q;
    while (q--) {
        int n;
        cin >> n;
        if (n == 1) {
            cout << 1 << endl;
            continue;
        }
        if (n % 2) {
            cout << -1 << endl;
        } else {
            for (int i = 0; i < n; ++i) {
                if (i % 2) {
                    cout << i << " ";
                } else {
                    cout << n - i << " ";
                }
            }
            cout << "\n";
        }
    }
    return 0;
}
引用中提到了np.random.permutation函数,它用于对给定的数组进行重新排列。这个函数可以直接生成一个随机排列的数组,也可以对一维或多维数组进行随机排序。在一维数组中,np.random.permutation函数会返回一个随机排序后的新数组。在多维数组中,该函数只会对第一维进行随机排序,即对行进行随机排序。 与np.random.shuffle函数相比,np.random.permutation不会改变自身数组,而是返回一个新的随机排列后的数组。所以它们的区别在于是否改变原数组。 以下是一个使用np.random.permutation函数的示例: ``` import numpy as np # 对一维数组进行随机排序 data = np.array([1, 2, 3, 4, 5, 6, 7]) a = np.random.permutation(data) print(a) # 对多维数组进行随机排序 arr = np.arange(9).reshape((3, 3)) arr2 = np.random.permutation(arr) print(arr2) ``` 在上述示例中,我们分别对一维数组data和二维数组arr进行了随机排序,并打印出结果。可以看到,生成的新数组是经过随机排序的。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [np.random.permutation函数](https://blog.csdn.net/qq_45288176/article/details/125117426)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [【Numpy】中np.random.shuffle()与np.random.permutation()的用法和区别](https://blog.csdn.net/lemonxiaoxiao/article/details/109239996)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值