如何在langchain中对大模型的输出进行格式化

简介

我们知道在大语言模型中, 不管模型的能力有多强大,他的输入和输出基本上都是文本格式的,文本格式的输入输出虽然对人来说非常的友好,但是如果我们想要进行一些结构化处理的话还是会有一点点的不方便。

不用担心,langchain已经为我们想到了这个问题,并且提出了完满的解决方案。

langchain中的output parsers

langchain中所有的output parsers都是继承自BaseOutputParser。这个基础类提供了对LLM大模型输出的格式化方法,是一个优秀的工具类。

我们先来看下他的实现:

class BaseOutputParser(BaseModel, ABC, Generic[T]):

    @abstractmethod
    def parse(self, text: str) -> T:
        """Parse the output of an LLM call.

        A method which takes in a string (assumed output of a language model )
        and parses it into some structure.

        Args:
            text: output of language model

        Returns:
            structured output
        """

    def parse_with_prompt(self, completion: str, prompt: PromptValue) -> Any:
        """Optional method to parse the output of an LLM call with a prompt.

        The prompt is largely provided in the event the OutputParser wants
        to retry or fix the output in some way, and needs information from
        the prompt to do so.

        Args:
            completion: output of language model
            prompt: prompt value

        Returns:
            structured output
        """
        return self.parse(completion)

    def get_format_instructions(self) -> str:
        """Instructions on how the LLM output should be formatted."""
        raise NotImplementedError

    @property
    def _type(self) -> str:
        """Return the type key."""
        raise NotImplementedError(
            f"_type property is not implemented in class {self.__class__.__name__}."
            " This is required for serialization."
        )

    def dict(self, **kwargs: Any) -> Dict:
        """Return dictionary representation of output parser."""
        output_parser_dict = super().dict()
        output_parser_dict["_type"] = self._type
        return output_parser_dict

BaseOutputParser 是一个基础的类,可能被其他特定的输出解析器继承,以实现特定语言模型的输出解析。

这个类使用了Python的ABC模块,表明它是一个抽象基类(Abstract Base Class),不能被直接实例化,而是需要子类继承并实现抽象方法。

Generic[T] 表示这个类是一个泛型类,其中T 是一个类型变量,它表示解析后的输出数据的类型。

@abstractmethod 装饰器标记了 parse 方法,说明它是一个抽象方法,必须在子类中实现。parse 方法接受一个字符串参数 text,通常是语言模型的输出文本,然后将其解析成特定的数据结构,并返回。

parse_with_prompt 方法也是一个抽象方法,接受两个参数,completion 是语言模型的输出,prompt 是与输出相关的提示信息。这个方法是可选的,可以用于在需要时解析输出,可能根据提示信息来调整输出。

get_format_instructions 方法返回关于如何格式化语言模型输出的说明。这个方法可以用于提供解析后数据的格式化信息。

_type 是一个属性,可能用于标识这个解析器的类型,用于后续的序列化或其他操作。

dict 方法返回一个包含输出解析器信息的字典,这个字典可以用于序列化或其他操作。

其中子类必须要实现的方法就是parse。其他的都做为辅助作用。

langchain中有哪些Output Parser

那么langchain中有哪些Output Parser的具体实现呢?具体对应我们应用中的什么场景呢?

接下来我们将会一一道来。

List parser

ListOutputParser的作用就是把LLM的输出转成一个list。ListOutputParser也是一个基类,我们具体使用的是他的子类:CommaSeparatedListOutputParser。

看一下他的parse方法:

    def parse(self, text: str) -> List[str]:
        """Parse the output of an LLM call."""
        return text.strip().
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值