目录
1、HA 概述
(1)所谓 HA(High Availablity),即高可用(7*24 小时不中断服务)。
(2)实现高可用最关键的策略是消除单点故障。HA 严格来说应该分成各个组件的 HA 机制:HDFS 的 HA 和 YARN 的 HA。
(3)NameNode 主要在以下两个方面影响 HDFS 集群
- NameNode 机器发生意外,如宕机,集群将无法使用,直到管理员重启
- NameNode 机器需要升级,包括软件、硬件升级,此时集群也将无法使用
HDFS HA 功能通过配置多个 NameNodes(Active/Standby)实现在集群中对 NameNode 的 热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方 式将 NameNode 很快的切换到另外一台机器。
2、HDFS-HA 集群搭建
2.1、HDFS-HA 核心问题
1)怎么保证三台 namenode 的数据一致
- a.Fsimage:让一台 nn 生成数据,让其他机器 nn 同步
- b.Edits:需要引进新的模块 JournalNode 来保证 edtis 的文件的数据一致性
2)怎么让同时只有一台 nn 是 active,其他所有是 standby 的
- a.手动分配
- b.自动分配
3)2nn 在 ha 架构中并不存在,定期合并 fsimage 和 edtis 的活谁来干
由 standby 的 nn 来干
4)如果 nn 真的发生了问题,怎么让其他的 nn 上位干活
- a.手动故障转移
- b.自动故障转移
3、HDFS-HA 手动模式
3.1、环境准备
- (1)修改 IP
- (2)修改主机名及主机名和 IP 地址的映射
- (3)关闭防火墙
- (4)ssh 免密登录
- (5)安装 JDK,配置环境变量等
3.2、规划集群
3.3、配置 HDFS-HA 集群
1)官方地址:http://hadoop.apache.org/
2)在 opt 目录下创建一个 ha 文件夹
[kgf@hadoop102 opt]$ ll
总用量 0
drwxr-xr-x. 5 kgf kgf 69 4月 27 10:59 module
drwxr-xr-x. 2 kgf kgf 108 4月 27 10:56 software
[kgf@hadoop102 opt]$ sudo mkdir ha
[kgf@hadoop102 opt]$ sudo chown kgf:kgf /opt/ha
[kgf@hadoop102 opt]$ pwd
/opt
[kgf@hadoop102 opt]$ ll
总用量 0
drwxr-xr-x. 2 kgf kgf 6 4月 29 20:36 ha
drwxr-xr-x. 5 kgf kgf 69 4月 27 10:59 module
drwxr-xr-x. 2 kgf kgf 108 4月 27 10:56 software
[kgf@hadoop102 opt]$
3)将/opt/module/下的 hadoop-3.1.3 拷贝到/opt/ha 目录下(记得删除 data 和 log 目录)
[kgf@hadoop102 opt]$ cp -r /opt/module/hadoop-3.1.3 /opt/ha/
4)配置 core-site.xml
<configuration>
<!-- 把多个 NameNode 的地址组装成一个集群 mycluster -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://mycluster</value>
</property>
<!-- 指定 hadoop 运行时产生文件的存储目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/ha/hadoop-3.1.3/data</value>
</property>
</configuration>
5)配置 hdfs-site.xml
<configuration>
<!-- NameNode 数据存储目录 -->
<property>
<name>dfs.namenode.name.dir</name>
<value>file://${hadoop.tmp.dir}/name</value>
</property>
<!-- DataNode 数据存储目录 -->
<property>
<name>dfs.datanode.data.dir</name>
<value>file://${hadoop.tmp.dir}/data</value>
</property>
<!-- JournalNode 数据存储目录 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>${hadoop.tmp.dir}/jn</value>
</property>
<!-- 完全分布式集群名称 -->
<property>
<name>dfs.nameservices</name>
<value>mycluster</value>
</property>
<!-- 集群中 NameNode 节点都有哪些 -->
<property>
<name>dfs.ha.namenodes.mycluster</name>
<value>nn1,nn2,nn3</value>
</property>
<!-- NameNode 的 RPC 通信地址 -->
<property>
<name>dfs.namenode.rpc-address.mycluster.nn1</name>
<value>hadoop102:8020</value>
</property>
<property>
<name>dfs.namenode.rpc-address.mycluster.nn2</name>
<value>hadoop103:8020</value>
</property>
<property>
<name>dfs.namenode.rpc-address.mycluster.nn3</name>
<value>hadoop104:8020</value>
</property>
<!-- NameNode 的 http 通信地址 -->
<property>
<name>dfs.namenode.http-address.mycluster.nn1</name>
<value>hadoop102:9870</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn2</name>
<value>hadoop103:9870</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn3</name>
<value>hadoop104:9870</value>
</property>
<!-- 指定 NameNode 元数据在 JournalNode 上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://hadoop102:8485;hadoop103:8485;hadoop104:8485/mycluster</value>
</property>
<!-- 访问代理类:client 用于确定哪个 NameNode 为 Active -->
<property>
<name>dfs.client.failover.proxy.provider.mycluster</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 -->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!-- 使用隔离机制时需要 ssh 秘钥登录-->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/kgf/.ssh/id_rsa</value>
</property>
</configuration>
6)分发配置好的 hadoop 环境到其他节点
3.4、启动 HDFS-HA 集群
1)将 HADOOP_HOME 环境变量更改到 HA 目录(三台机器)
[kgf@hadoop104 opt]$ sudo vim /etc/profile.d/my_env.sh
将 HADOOP_HOME 部分改为如下
#HADOOP_HOME
export HADOOP_HOME=/opt/ha/hadoop-3.1.3
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin
去三台机器上 source 环境变量
2)在各个 JournalNode 节点上,输入以下命令启动 journalnode 服务
[kgf@hadoop102 ~]$ hdfs --daemon start journalnode
[kgf@hadoop103 ~]$ hdfs --daemon start journalnode
[kgf@hadoop104 ~]$ hdfs --daemon start journalnode
3)在[nn1]上,对其进行格式化,并启动
[kgf@hadoop102 ~]$ hdfs namenode -format
[kgf@hadoop102 ~]$ hdfs --daemon start namenode
4)在[nn2]和[nn3]上,同步 nn1 的元数据信息
[kgf@hadoop103 ~]$ hdfs namenode -bootstrapStandby
[kgf@hadoop104 ~]$ hdfs namenode -bootstrapStandby
5)启动[nn2]和[nn3]
[kgf@hadoop103 ~]$ hdfs --daemon start namenode
[kgf@hadoop104 ~]$ hdfs --daemon start namenode
6)查看 web 页面显示
7)在所有节点上,启动 datanode
[kgf@hadoop102 ~]$ hdfs --daemon start datanode
[kgf@hadoop103 ~]$ hdfs --daemon start datanode
[kgf@hadoop104 ~]$ hdfs --daemon start datanode
8)将[nn1]切换为 Active
[kgf@hadoop102 hadoop-3.1.3]$ hdfs haadmin -transitionToActive nn1
9)查看是否 Active
[kgf@hadoop102 hadoop-3.1.3]$ hdfs haadmin -getServiceState nn1
active
[kgf@hadoop102 hadoop-3.1.3]$
4、HDFS-HA 自动模式
4.1、HDFS-HA 自动故障转移工作机制
自动故障转移为 HDFS 部署增加了两个新组件:ZooKeeper 和 ZKFailoverController (ZKFC)进程,如图所示。ZooKeeper 是维护少量协调数据,通知客户端这些数据的改变 和监视客户端故障的高可用服务。
4.2、HDFS-HA 自动故障转移的集群规划
4.3、配置 HDFS-HA 自动故障转移
1)具体配置
(1)在 hdfs-site.xml 中增加
<!-- 启用 nn 故障自动转移 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
(2)在 core-site.xml 文件中增加
<!-- 指定 zkfc 要连接的 zkServer 地址 -->
<property>
<name>ha.zookeeper.quorum</name>
<value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
</property>
(3)修改后分发配置文件
[kgf@hadoop102 hadoop-3.1.3]$ pwd
/opt/ha/hadoop-3.1.3
[kgf@hadoop102 hadoop-3.1.3]$ xsync etc/hadoop/
2)启动
(1)关闭所有 HDFS 服务:
[kgf@hadoop102 ~]$ stop-dfs.sh
(2)启动 Zookeeper 集群:
[kgf@hadoop102 ~]$ zkServer.sh start
[kgf@hadoop103 ~]$ zkServer.sh start
[kgf@hadoop104 ~]$ zkServer.sh start
(3)启动 Zookeeper 以后,然后再初始化 HA 在 Zookeeper 中状态:
[kgf@hadoop102 bin]$ hdfs zkfc -formatZK
(4)启动 HDFS 服务:
[kgf@hadoop102 bin]$ start-dfs.sh
(5)可以去 zkCli.sh 客户端查看 Namenode 选举锁节点内容:
[zk: localhost:2181(CONNECTED) 1] get -s /hadoop-ha/mycluster/ActiveStandbyElectorLock
myclusternn1 hadoop102 �>(�>
cZxid = 0x300000008
ctime = Mon Apr 29 21:27:24 CST 2024
mZxid = 0x300000008
mtime = Mon Apr 29 21:27:24 CST 2024
pZxid = 0x300000008
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x300003ae48b0001
dataLength = 33
numChildren = 0
[zk: localhost:2181(CONNECTED) 2]
3)验证
(1)将 Active NameNode 进程 kill,查看网页端三台 Namenode 的状态变化
[atguigu@hadoop102 ~]$ kill -9 namenode 的进程 id
5、YARN-HA 配置
5.1、YARN-HA 工作机制
5.2、配置 YARN-HA 集群
4)具体配置
(1)yarn-site.xml
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!-- 启用 resourcemanager ha -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 声明两台 resourcemanager 的地址 -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>cluster-yarn1</value>
</property>
<!--指定 resourcemanager 的逻辑列表-->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2,rm3</value>
</property>
<!-- ========== rm1 的配置 ========== -->
<!-- 指定 rm1 的主机名 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>hadoop102</value>
</property>
<!-- 指定 rm1 的 web 端地址 -->
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>hadoop102:8088</value>
</property>
<!-- 指定 rm1 的内部通信地址 -->
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>hadoop102:8032</value>
</property>
<!-- 指定 AM 向 rm1 申请资源的地址 -->
<property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>hadoop102:8030</value>
</property>
<!-- 指定供 NM 连接的地址 -->
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<value>hadoop102:8031</value>
</property>
<!-- ========== rm2 的配置 ========== -->
<!-- 指定 rm2 的主机名 -->
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>hadoop103</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>hadoop103:8088</value>
</property>
<property>
<name>yarn.resourcemanager.address.rm2</name>
<value>hadoop103:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>hadoop103:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
<value>hadoop103:8031</value>
</property>
<!-- ========== rm3 的配置 ========== -->
<!-- 指定 rm1 的主机名 -->
<property>
<name>yarn.resourcemanager.hostname.rm3</name>
<value>hadoop104</value>
</property>
<!-- 指定 rm1 的 web 端地址 -->
<property>
<name>yarn.resourcemanager.webapp.address.rm3</name>
<value>hadoop104:8088</value>
</property>
<!-- 指定 rm1 的内部通信地址 -->
<property>
<name>yarn.resourcemanager.address.rm3</name>
<value>hadoop104:8032</value>
</property>
<!-- 指定 AM 向 rm1 申请资源的地址 -->
<property>
<name>yarn.resourcemanager.scheduler.address.rm3</name>
<value>hadoop104:8030</value>
</property>
<!-- 指定供 NM 连接的地址 -->
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm3</name>
<value>hadoop104:8031</value>
</property>
<!-- 指定 zookeeper 集群的地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
</property>
<!-- 启用自动恢复 -->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<!-- 指定 resourcemanager 的状态信息存储在 zookeeper 集群 -->
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<!-- 环境变量的继承 -->
<property>
<name>yarn.nodemanager.env-whitelist</name>
<value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
</property>
</configuration>
(2)同步更新其他节点的配置信息,分发配置文件
[kgf@hadoop102 hadoop-3.1.3]$ ls
bin data etc hello.txt include lib libexec LICENSE.txt liubei.txt logs NOTICE.txt README.txt sbin share wc.jar
[kgf@hadoop102 hadoop-3.1.3]$ xsync etc/hadoop/
4)启动 YARN
(1)在 hadoop102 或者 hadoop103 中执行:
[kgf@hadoop102 hadoop-3.1.3]$ jps
5873 NameNode
6178 Jps
5059 DataNode
4652 QuorumPeerMain
5532 DFSZKFailoverController
5295 JournalNode
[kgf@hadoop102 hadoop-3.1.3]$ start-yarn.sh
Starting resourcemanagers on [ hadoop102 hadoop103 hadoop104]
Starting nodemanagers
[kgf@hadoop102 hadoop-3.1.3]$
(2)查看服务状态
[kgf@hadoop102 hadoop-3.1.3]$ yarn rmadmin -getServiceState rm1
active
[kgf@hadoop102 hadoop-3.1.3]$
(3)可以去 zkCli.sh 客户端查看 ResourceManager 选举锁节点内容:
[kgf@hadoop102 ~]$ zkCli.sh
[zk: localhost:2181(CONNECTED) 16] get -s
/yarn-leader-election/cluster-yarn1/ActiveStandbyElectorLock
cluster-yarn1rm1
cZxid = 0x100000022
ctime = Tue Jul 14 17:06:44 CST 2020
mZxid = 0x100000022
mtime = Tue Jul 14 17:06:44 CST 2020
pZxid = 0x100000022
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x30000da33080005
dataLength = 20
numChildren = 0
(4)web 端查看 hadoop102:8088 和 hadoop103:8088 的 YARN 的状态