1、自定义函数
1)Hive自带了一些函数,比如:max/min等,但是数量有限,自己可以通过自定义UDF来方便的扩展
2)当Hive提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数(UDF:user-defined function)
3)根据用户自定义函数类别分为以下三种:
(1)UDF(User-Defined-Function)
一进一出。
(2)UDAF(User-Defined Aggregation Function)
用户自定义聚合函数,多进一出。
类似于:count/max/min
(3)UDTF(User-Defined Table-Generating Functions)
用户自定义表生成函数,一进多出。
如lateral view explode()
4)官方文档地址
https://cwiki.apache.org/confluence/display/Hive/HivePlugins
5)编程步骤
(1)继承Hive提供的类
org.apache.hadoop.hive.ql.udf.generic.GenericUDF
org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
(2)实现类中的抽象方法
(3)在hive的命令行窗口创建函数
2、自定义UDF函数
0)需求
自定义一个UDF实现计算给定基本数据类型的长度,例如:
hive(default)> select my_len("abcd");
4
1)创建一个Maven工程Hive
2)导入依赖
<dependencies>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>3.1.3</version>
</dependency>
</dependencies>
3)创建一个类
package com.atguigu.hive.udf;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentTypeException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
/**
* 我们需计算一个要给定基本数据类型的长度
*/
public class MyUDF extends GenericUDF {
/**
* 判断传进来的参数的类型和长度
* 约定返回的数据类型
*/
@Override
public ObjectInspector initialize(ObjectInspector[] arguments) throws UDFArgumentException {
if (arguments.length !=1) {
throw new UDFArgumentLengthException("please give me only one arg");
}
if (!arguments[0].getCategory().equals(ObjectInspector.Category.PRIMITIVE)){
throw new UDFArgumentTypeException(1, "i need primitive type arg");
}
return PrimitiveObjectInspectorFactory.javaIntObjectInspector;
}
/**
* 解决具体逻辑的
*/
@Override
public Object evaluate(DeferredObject[] arguments) throws HiveException {
Object o = arguments[0].get();
if(o==null){
return 0;
}
return o.toString().length();
}
@Override
// 用于获取解释的字符串
public String getDisplayString(String[] children) {
return "";
}
}
4)创建临时函数
(1)打成jar包上传到服务器/opt/module/hive/datas/myudf.jar
(2)将jar包添加到hive的classpath,临时生效
hive (default)> add jar /opt/module/hive/datas/myudf.jar;
(3)创建临时函数与开发好的java class关联
hive (default)>
create temporary function my_len
as "com.atguigu.hive.udf.MyUDF";
(4)即可在hql中使用自定义的临时函数
hive (default)>
select
ename,
my_len(ename) ename_len
from emp;
(5)删除临时函数
hive (default)> drop temporary function my_len;
注意:临时函数只跟会话有关系,跟库没有关系。只要创建临时函数的会话不断,在当前会话下,任意一个库都可以使用,其他会话全都不能使用。
5)创建永久函数
(1)创建永久函数
注意:因为add jar本身也是临时生效,所以在创建永久函数的时候,需要制定路径(并且因为元数据的原因,这个路径还得是HDFS上的路径)。
hive (default)>
create function my_len2
as "com.atguigu.hive.udf.MyUDF"
using jar "hdfs://hadoop102:8020/udf/myudf.jar";
(2)即可在hql中使用自定义的永久函数
hive (default)>
select
ename,
my_len2(ename) ename_len
from emp;
(3)删除永久函数
hive (default)> drop function my_len2;
注意:永久函数跟会话没有关系,创建函数的会话断了以后,其他会话也可以使用。
永久函数创建的时候,在函数名之前需要自己加上库名,如果不指定库名的话,会默认把当前库的库名给加上。
永久函数使用的时候,需要在指定的库里面操作,或者在其他库里面使用的话加上,库名.函数名。
3、分区表
3.1、简介
Hive中的分区就是把一张大表的数据按照业务需要分散的存储到多个目录,每个目录就称为该表的一个分区。在查询时通过where子句中的表达式选择查询所需要的分区,这样的查询效率会提高很多。
3.2、分区表基本语法
1)创建分区表
hive (default)>
create table dept_partition
(
deptno int, --部门编号
dname string, --部门名称
loc string --部门位置
)
partitioned by (day string)
row format delimited fields terminated by '\t';
2)分区表读写数据