欧拉图

欧拉路定义:对于连通图G,若存在一个路径经过每条边且仅一次,称该路为欧拉路;若存在一个回路经过每条边且仅一次,称该回路为欧拉回路;

有定理如下:

1:无向图G具有欧拉路当且仅当G是连通图,并且有0个或者两个奇度数结点。(0个的时候存在欧拉回路)。

2:有向图G具有欧拉回路当且仅当每个结点的入度等于出度。

3:有向图G具有欧拉路当且仅当除了两个结点,其他的结点出度等于入度,这两个结点一个出度比入度大一,一个入度比出度大一。


求解欧拉回路(定理2):和证明过程差不多。对于有向图,从v0通过e0到v1,同理走下去,因为这是连通图且每个结点的出度等于入度,所以一定能走回到v0;            

1:如果已经得到欧拉回路则此退出

2:否则肯定存在一些环没有路过(不是路径,因为每个结点的出度等于入度),假如已经路过的vi还有可达的边没有经过,说明还有可达vi的边没有路过,说明这里可以构成一个路过vi的回路(可以自己反证),加上这个回路回到1.


oj最近炸了暂时不留模板题了,先留一个样例:

8 10
1 2
2 3
3 4
4 5
5 1
3 8
8 4
4 7
7 6
6 3

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#include<cmath>
#define maxn 105

 using namespace std;

int n, m;
int head[maxn];
bool vis[maxn * 2];
int ans[maxn];
int num;

struct P
{
    int to;
    int next;
}Edge[maxn];

void DFS(int s)
{
    for(int i = head[s]; i != -1; i = Edge[i].next)
    {
        if(!vis[i])
        {
            vis[i] = 1;
            DFS(Edge[i].to);
            ans[num++] = i;
        }
    }
}

 int main()
 {
    while(cin >> n >> m)
    {
        memset(head, -1, sizeof(head));
        memset(vis, 0, sizeof(vis));
        num = 0;
        for(int i = 0; i < m; i++)
        {
            int u, v;
            cin >> u >> v;
            Edge[i].to = v;
            Edge[i].next = head[u];
            head[u] = i;
        }
        DFS(1);
        reverse(ans, ans + num);
        cout << 1 << endl;//DFS开始的起点
        for(int i = 0; i < num; i++)
        {
            int x = ans[i];
            cout << Edge[x].to << endl;
        }
    }
     return 0;
 }



  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值