大数据和机器学习的关系

现在已经成为大数据专业的研究生了,但是对于很多概念还是有点模糊,在网上查了一些资料,感觉略有心得,再次整理一下

大数据:大数据是相当于传统数据的概念,大数据的“大”体现在数据的 数量大,种类多,产生快,处理快,价值高等特点,大数据的学习路线又可以分为两种,一种是大数据 开发\分析\应用,以时下热门的hadoop和spark为主;另外一种是大数据的研发工作,也就是开发出大数据处理需要的数据库,统计平台,研发新的机器学习的算法等等。总之,分析是为了追求数据结果的,研发是为了更好的去分析。但是想在大数据领域学习下去,两种都必须有所涉及,但是学习要有侧重其中一种。

数据挖掘:从数据中提取潜在的、有价值的信息。这是一个比较宽泛的概念,使用机器学习算法来对大数据进行分析,找到有用的信息可以是数据挖掘,你从一张excel表中仔细观察,终于找到了几个有用的规律,这也算是数据挖掘。数据挖掘可以看成是对大数据处理的一种方式,但是大数据的处理方式并不止数据挖掘。

机器学习:机器学习简单的讲就是我们给计算机输入一些数据后,它必须做一些事情,也就是通过学习我们输入的数据,计算机要做出相应的反应,展示我们需要看到的结果。而且学习数据的过程是明确了,计算机通过我们设计的各种学习模式去学习数据,并通过从数据中学到的信息对计算机自身进行校正,以便于更好的学习,整个过程是迭代的。只要是采用了这种迭代并不断逼近的策略,一般都可以归到机器学习的范畴。要学习机器学习,各种学习模式是必须会的。之所以大数据和机器学习经常一起出现,是因为我们会使用机器学习这个工具做大数据的分析工作,也就是说机器学习可以看做是我们做大数据分析的一个比较好用的工具,但是大数据分析的工具并不止机器学习,机器学习也并不只能做大数据分析。

深度学习:深度学习就是一种比较火的机器学习算法,是基于神经网络发展起来的。

云计算:简而言之,就是将计算任务转移到服务器端,用户端只需要个显示器就可以。

阅读更多
个人分类: 大数据
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭