A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
解法很简单,以start的坐标为(m,n) finish的坐标为(0,0)
a[m,n]表示从(m,n)到 (0,0) 的unique paths
从(m,n)走一步会使坐标变为(m-1,n)或(m,n-1)
也就是说a[m,n] = a[m-1,n] + a[m,n-1]
当m或n为1是,路径只有一条
将以上逻辑转为代码就可以了,如下:
int uniquePaths(int m, int n) {
if(m == 1||n == 1) {
return 1;
}
int **a;
a = new int*[m + 1];
for(int i = 1; i < m + 1; ++i) {
a[i] = new int[n+1];
}
for(int i = 1; i < m+1; ++i) {
for (int j = 1; j < n+1; ++j) {
if(i == 1||j == 1){
a[i][j] = 1;
}
else{
a[i][j] = a[i-1][j] + a[i][j-1];
}
}
}
return a[m][n];