Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.


解法很简单,以start的坐标为(m,n) finish的坐标为(0,0)

 a[m,n]表示从(m,n)到 (0,0) 的unique paths

从(m,n)走一步会使坐标变为(m-1,n)或(m,n-1)

也就是说a[m,n] = a[m-1,n] + a[m,n-1]

当m或n为1是,路径只有一条

将以上逻辑转为代码就可以了,如下:

    int uniquePaths(int m, int n) {
        if(m == 1||n == 1) {
            return 1;
        }
        int **a;
        a = new int*[m + 1];
        for(int i = 1; i < m + 1; ++i) {
            a[i] = new int[n+1];
        }
        for(int i = 1; i < m+1; ++i) {
            for (int j = 1; j < n+1; ++j) {
                if(i == 1||j == 1){
                    a[i][j] = 1;
                }
                else{
                    a[i][j] = a[i-1][j] + a[i][j-1];
                }
            }
        }
        return a[m][n];


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值