图像重建的结构

本文介绍了Auto-Encoder的结构,包括其down-sampling和upsampling部分,以及在特征提取和图像生成中的应用。同时,U-Net的独特前传结构在医学图像分割中的优势被提及,强调了它在捕捉空间信息方面的优越性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.Auto-Encoder,在图像生成的领域,有一种很重要的网络结构叫做Auto-Encoder.

Auto-Encoder的特征是前半部分是down-sampling部分,一般使用CNN实现;后半部分是Upsampling,一般用逆卷积实现。在前半部分。后半部分相连接的地方,一般是CxHxW中HxW最小的部分。(1)利用前半部分做特征提取;(2)利用后半部分做图像生成。
 

2.U-Net概述与实现,最开始是出现在医学图像分割上,一方面它的结构和Auto-Encoder的传统结构十分相似,另一方面它独特的前传结构让网络可以捕捉到很多空间的信息

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值