AtCoder Beginner Contest 389 F题题解

题目

F - Rated Range

思路

总的思路是 线段树二分。因为 Li 和 Ri 的最大只有 5e5,所有我们可以开一个大小为 5e5 的数组 a,下标 i 的含义为高桥的原始分数,a[i] 的含义为每场比赛后的分数,我们可以将 a[i] 初始化为 i,代表还没比赛时每种原始分数的情况。
那具体要怎么做呢?我们只要将每场比赛的 Li 和 Ri 在线段树上进行二分搜索(对应代码中 max_right 函数),找到大于等于 Li 且 最近 的数的下标和大于等于 Ri 且 最远 的下标(相当于一个lower_bound, 一个upper_bound然后减去1),记为 left 和 right。然后我们将下标 [left, right] 上的数全部加 1 即可。最后查询时,直接输出线段树中下标所对应的数即可,即 seg.get(X)。
关于二分的合法性,可以手动模拟几组数据体验一下,就能感受到数组是递增的,具体不再证明。
附上模拟的过程。

代码

#include <bits/stdc++.h>

#define INF 2e18
#define int long long
using namespace std;

const int MAXN = 500001;

class SegTree { 
public:
    SegTree(int n) {
        this->n = n;
        mx.resize(n << 2);
        mn.resize(n << 2);
        sum.resize(n << 2);  // 新增sum数组
        addTag.resize(n << 2);
        change.resize(n << 2);
        updateTag.resize(n << 2);
        build(1, n, 1);
    }

    long long max_right(int v) {
        int l = 1, r = n;  
        int res = -1;
        while (l <= r) {
            int mid = (l + r) >> 1;
            long long max_value = queryMax(1, mid);
            if (max_value >= v) {
                res = mid; 
                r = mid - 1; 
            } else {
                l = mid + 1;  
            }
        }
        return res;
    }

    void set(int i, long long v) {  // 单点更新
        update(i, i, v, 1, n, 1);
    }

    void set(int l, int r, long long v) {  // 区间更新
        if (l > r)
            return;
        update(l, r, v, 1, n, 1);
    }

    void add(int i, long long v) {  // 单点加
        add(i, i, v, 1, n, 1);
    }

    void add(int l, int r, long long v) {  // 区间加
        if (l > r)
            return;
        add(l, r, v, 1, n, 1);
    }

    long long get(int i) {  // 单点查询
        return queryMax(i, i, 1, n, 1);
    }

    long long queryMax(int l, int r) {  // 区间查询最大值
        if (l > r)
            return MIN;
        return queryMax(l, r, 1, n, 1);
    }

    long long queryMin(int l, int r) {  // 区间查询最小值
        if (l > r)
            return MAX;
        return queryMin(l, r, 1, n, 1);
    }

    long long querySum(int l, int r) {  // 区间求和
        if (l > r)
            return 0;
        return querySum(l, r, 1, n, 1);
    }

private:
    static const long long MAX = 0x3f3f3f3f3f3f3f3f;
    static const long long MIN = 0;
    int n;
    std::vector<long long> mx, mn, sum, change, addTag;
    std::vector<bool> updateTag;

    void up(int i) {
        mx[i] = std::max(mx[i << 1], mx[i << 1 | 1]);
        mn[i] = std::min(mn[i << 1], mn[i << 1 | 1]);
        sum[i] = sum[i << 1] + sum[i << 1 | 1];  // 更新区间和
    }

    void build(int l, int r, int i) {
        if (l == r) {
            mx[i] = mn[i] = sum[i] = 0;
        } else {
            int mid = (l + r) >> 1;
            build(l, mid, i << 1);
            build(mid + 1, r, i << 1 | 1);
            up(i);
        }
        updateTag[i] = false;
        change[i] = 0;
        addTag[i] = 0;
    }

    void down(int l, int r, int i) {
        if (updateTag[i]) {
            int mid = (l + r) >> 1;
            lazy_update(l, mid, change[i], i << 1);
            lazy_update(mid + 1, r, change[i], i << 1 | 1);
            updateTag[i] = false;
        }
        if (addTag[i]) {
            int mid = (l + r) >> 1;
            lazy_add(l, mid, addTag[i], i << 1);
            lazy_add(mid + 1, r, addTag[i], i << 1 | 1);
            addTag[i] = 0;
        }
    }

    void lazy_add(int l, int r, long long v, int i) {
        mx[i] += v;
        mn[i] += v;
        sum[i] += (r - l + 1) * v;  // 更新区间和
        addTag[i] += v;
    }

    void lazy_update(int l, int r, long long v, int i) {
        mx[i] = v;
        mn[i] = v;
        sum[i] = (r - l + 1) * v;  // 更新区间和
        change[i] = v;
        updateTag[i] = true;
        addTag[i] = 0;
    }

    void update(int L, int R, long long v, int l, int r, int i) {
        if (L <= l && r <= R)
            lazy_update(l, r, v, i);
        else {
            down(l, r, i);
            int mid = (l + r) >> 1;
            if (L <= mid)
                update(L, R, v, l, mid, i << 1);
            if (R > mid)
                update(L, R, v, mid + 1, r, i << 1 | 1);
            up(i);
        }
    }

    void add(int L, int R, long long v, int l, int r, int i) {
        if (L <= l && r <= R)
            lazy_add(l, r, v, i);
        else {
            down(l, r, i);
            int mid = (l + r) >> 1;
            if (L <= mid)
                add(L, R, v, l, mid, i << 1);
            if (R > mid)
                add(L, R, v, mid + 1, r, i << 1 | 1);
            up(i);
        }
    }

    long long queryMax(int L, int R, int l, int r, int i) {
        if (L <= l && R >= r)
            return mx[i];
        else {
            down(l, r, i);
            int mid = (l + r) >> 1;
            long long res = MIN;
            if (L <= mid)
                res = std::max(res, queryMax(L, R, l, mid, i << 1));
            if (R > mid)
                res = std::max(res, queryMax(L, R, mid + 1, r, i << 1 | 1));
            return res;
        }
    }

    long long queryMin(int L, int R, int l, int r, int i) {
        if (L <= l && R >= r)
            return mn[i];
        else {
            down(l, r, i);
            int mid = (l + r) >> 1;
            long long res = MAX;
            if (L <= mid)
                res = std::min(res, queryMin(L, R, l, mid, i << 1));
            if (R > mid)
                res = std::min(res, queryMin(L, R, mid + 1, r, i << 1 | 1));
            return res;
        }
    }

    long long querySum(int L, int R, int l, int r, int i) {
        if (L <= l && R >= r)
            return sum[i];
        else {
            down(l, r, i);
            int mid = (l + r) >> 1;
            long long res = 0;
            if (L <= mid)
                res += querySum(L, R, l, mid, i << 1);
            if (R > mid)
                res += querySum(L, R, mid + 1, r, i << 1 | 1);
            return res;
        }
    }
};

void solve() {
    int n;
    cin >> n;

    SegTree seg(MAXN);
    for (int i = 1; i <= MAXN; i++) {
        seg.set(i, i);
    }

    for (int i = 0; i < n; i++) {
        int l, r;
        cin >> l >> r;

        int left = seg.max_right(l);
        int right = seg.max_right(r + 1) - 1;

        // cout << left << ' ' << right << '\n';

        seg.add(left, right, 1);
    }

    int q;
    cin >> q;

    for (int i = 0; i < q; i++) {
        int x;
        cin >> x;
        cout << seg.get(x) << '\n';
    }
}

signed main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int t = 1;
    // cin >> t;

    while(t--){
        solve();
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值