题目
思路
总的思路是 线段树二分。因为 Li 和 Ri 的最大只有 5e5,所有我们可以开一个大小为 5e5 的数组 a,下标 i 的含义为高桥的原始分数,a[i] 的含义为每场比赛后的分数,我们可以将 a[i] 初始化为 i,代表还没比赛时每种原始分数的情况。
那具体要怎么做呢?我们只要将每场比赛的 Li 和 Ri 在线段树上进行二分搜索(对应代码中 max_right 函数),找到大于等于 Li 且 最近 的数的下标和大于等于 Ri 且 最远 的下标(相当于一个lower_bound, 一个upper_bound然后减去1),记为 left 和 right。然后我们将下标 [left, right] 上的数全部加 1 即可。最后查询时,直接输出线段树中下标所对应的数即可,即 seg.get(X)。
关于二分的合法性,可以手动模拟几组数据体验一下,就能感受到数组是递增的,具体不再证明。
附上模拟的过程。
代码
#include <bits/stdc++.h>
#define INF 2e18
#define int long long
using namespace std;
const int MAXN = 500001;
class SegTree {
public:
SegTree(int n) {
this->n = n;
mx.resize(n << 2);
mn.resize(n << 2);
sum.resize(n << 2); // 新增sum数组
addTag.resize(n << 2);
change.resize(n << 2);
updateTag.resize(n << 2);
build(1, n, 1);
}
long long max_right(int v) {
int l = 1, r = n;
int res = -1;
while (l <= r) {
int mid = (l + r) >> 1;
long long max_value = queryMax(1, mid);
if (max_value >= v) {
res = mid;
r = mid - 1;
} else {
l = mid + 1;
}
}
return res;
}
void set(int i, long long v) { // 单点更新
update(i, i, v, 1, n, 1);
}
void set(int l, int r, long long v) { // 区间更新
if (l > r)
return;
update(l, r, v, 1, n, 1);
}
void add(int i, long long v) { // 单点加
add(i, i, v, 1, n, 1);
}
void add(int l, int r, long long v) { // 区间加
if (l > r)
return;
add(l, r, v, 1, n, 1);
}
long long get(int i) { // 单点查询
return queryMax(i, i, 1, n, 1);
}
long long queryMax(int l, int r) { // 区间查询最大值
if (l > r)
return MIN;
return queryMax(l, r, 1, n, 1);
}
long long queryMin(int l, int r) { // 区间查询最小值
if (l > r)
return MAX;
return queryMin(l, r, 1, n, 1);
}
long long querySum(int l, int r) { // 区间求和
if (l > r)
return 0;
return querySum(l, r, 1, n, 1);
}
private:
static const long long MAX = 0x3f3f3f3f3f3f3f3f;
static const long long MIN = 0;
int n;
std::vector<long long> mx, mn, sum, change, addTag;
std::vector<bool> updateTag;
void up(int i) {
mx[i] = std::max(mx[i << 1], mx[i << 1 | 1]);
mn[i] = std::min(mn[i << 1], mn[i << 1 | 1]);
sum[i] = sum[i << 1] + sum[i << 1 | 1]; // 更新区间和
}
void build(int l, int r, int i) {
if (l == r) {
mx[i] = mn[i] = sum[i] = 0;
} else {
int mid = (l + r) >> 1;
build(l, mid, i << 1);
build(mid + 1, r, i << 1 | 1);
up(i);
}
updateTag[i] = false;
change[i] = 0;
addTag[i] = 0;
}
void down(int l, int r, int i) {
if (updateTag[i]) {
int mid = (l + r) >> 1;
lazy_update(l, mid, change[i], i << 1);
lazy_update(mid + 1, r, change[i], i << 1 | 1);
updateTag[i] = false;
}
if (addTag[i]) {
int mid = (l + r) >> 1;
lazy_add(l, mid, addTag[i], i << 1);
lazy_add(mid + 1, r, addTag[i], i << 1 | 1);
addTag[i] = 0;
}
}
void lazy_add(int l, int r, long long v, int i) {
mx[i] += v;
mn[i] += v;
sum[i] += (r - l + 1) * v; // 更新区间和
addTag[i] += v;
}
void lazy_update(int l, int r, long long v, int i) {
mx[i] = v;
mn[i] = v;
sum[i] = (r - l + 1) * v; // 更新区间和
change[i] = v;
updateTag[i] = true;
addTag[i] = 0;
}
void update(int L, int R, long long v, int l, int r, int i) {
if (L <= l && r <= R)
lazy_update(l, r, v, i);
else {
down(l, r, i);
int mid = (l + r) >> 1;
if (L <= mid)
update(L, R, v, l, mid, i << 1);
if (R > mid)
update(L, R, v, mid + 1, r, i << 1 | 1);
up(i);
}
}
void add(int L, int R, long long v, int l, int r, int i) {
if (L <= l && r <= R)
lazy_add(l, r, v, i);
else {
down(l, r, i);
int mid = (l + r) >> 1;
if (L <= mid)
add(L, R, v, l, mid, i << 1);
if (R > mid)
add(L, R, v, mid + 1, r, i << 1 | 1);
up(i);
}
}
long long queryMax(int L, int R, int l, int r, int i) {
if (L <= l && R >= r)
return mx[i];
else {
down(l, r, i);
int mid = (l + r) >> 1;
long long res = MIN;
if (L <= mid)
res = std::max(res, queryMax(L, R, l, mid, i << 1));
if (R > mid)
res = std::max(res, queryMax(L, R, mid + 1, r, i << 1 | 1));
return res;
}
}
long long queryMin(int L, int R, int l, int r, int i) {
if (L <= l && R >= r)
return mn[i];
else {
down(l, r, i);
int mid = (l + r) >> 1;
long long res = MAX;
if (L <= mid)
res = std::min(res, queryMin(L, R, l, mid, i << 1));
if (R > mid)
res = std::min(res, queryMin(L, R, mid + 1, r, i << 1 | 1));
return res;
}
}
long long querySum(int L, int R, int l, int r, int i) {
if (L <= l && R >= r)
return sum[i];
else {
down(l, r, i);
int mid = (l + r) >> 1;
long long res = 0;
if (L <= mid)
res += querySum(L, R, l, mid, i << 1);
if (R > mid)
res += querySum(L, R, mid + 1, r, i << 1 | 1);
return res;
}
}
};
void solve() {
int n;
cin >> n;
SegTree seg(MAXN);
for (int i = 1; i <= MAXN; i++) {
seg.set(i, i);
}
for (int i = 0; i < n; i++) {
int l, r;
cin >> l >> r;
int left = seg.max_right(l);
int right = seg.max_right(r + 1) - 1;
// cout << left << ' ' << right << '\n';
seg.add(left, right, 1);
}
int q;
cin >> q;
for (int i = 0; i < q; i++) {
int x;
cin >> x;
cout << seg.get(x) << '\n';
}
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t = 1;
// cin >> t;
while(t--){
solve();
}
return 0;
}