曲线救国 | 双非"渣硕"的秋招路

本文分享了一名双非背景、NLP渣硕的秋招经历,包括58同城面试过程中的项目分析(BERT模型对比、句对匹配优化)、以及求职策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4f66b038820ef14b2d2d7048728b4c75.jpeg

作者 | 带带大兄弟

面试锦囊之面经分享系列,持续更新中 235bfd6c3f9e9369b83d1ff12076dfc7.png

欢迎后台回复"面试"加入讨论组交流噢 94cc5cc87019cfe54b4a4f94efbc1df4.png

一篇旧文,可以参考~

写在前面

双非渣硕,0实习,3篇水文,三个给老板当打工仔的nlp横向项目,八月份开始准备秋招,纠结开发还是算法,开发的话菜而自知,算法也是菜而自知,最后还是头铁NLP算法。

秋招进度:投递150+,笔试50+,面试30+,offer 2,只求当咸鱼,基本躺平了

下面是我的部分面经记录,希望对后来人有帮助 9c5c37d32a6f6482169282c086fd0760.png

58同城

找了在58NLP工作的本科同学内推,估计HR给忘了,第一批没内推上,只赶上了第二批笔试,当时已经开奖了好多人了,感觉坑位不多。

一面
  • 自我介绍

  • 今后的事业规划、研究方向

  • 项目1:为什么选择这种模型,有尝试过其他模型吗

  • BERT的优缺点

  • PTM都了解哪些,BERT与GPT区别

  • 单项与双向在实际训练时有差别吗

  • bert的mask会带来什么缺点吗

  • 项目2:句对匹配任务

    • 每次查询都要与库里所有的数据做计算,有考虑过优化么

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值