Calibration方法——Matrix scaling

文章介绍了MatrixScaling作为神经网络校准的一种方法,通过矩阵缩放降低ECE并提高分类准确性。作者提供了PyTorch实现代码,展示如何在训练后用验证集计算W和b,然后应用到测试集上进行校准,从而改进模型的置信度估计。
摘要由CSDN通过智能技术生成

本文内容部分来源于论文on calibration of modern neural networks 

论文地址:https://arxiv.org/pdf/1706.04599.pdf

Calibration这个领域可以说比较小众,自己也是读一篇文章才碰到这个概念。文章中作者使用了matrix scaling进行calibration,不仅降低了ece,同时分类acc也增加了1%。但是网上搜了一圈都没有找到代码,所以就自己实现了一下,分享出来。

关于caliberation这里给出一篇写的比较好的文章,不熟悉的同学可以去阅读一下

Calibration: 一个工业价值极大,学术界却鲜有研究的问题!

1. 什么是Matrix scaling

论文中给出的公式如下

W和b是我们要求解的parameters,W的shape为num_classes*num_classes,b就是一个bias

z是输入softmax的logits,也就是分类网络最后一层的输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值