本文内容部分来源于论文on calibration of modern neural networks
论文地址:https://arxiv.org/pdf/1706.04599.pdf
Calibration这个领域可以说比较小众,自己也是读一篇文章才碰到这个概念。文章中作者使用了matrix scaling进行calibration,不仅降低了ece,同时分类acc也增加了1%。但是网上搜了一圈都没有找到代码,所以就自己实现了一下,分享出来。
关于caliberation这里给出一篇写的比较好的文章,不熟悉的同学可以去阅读一下
Calibration: 一个工业价值极大,学术界却鲜有研究的问题!
1. 什么是Matrix scaling
论文中给出的公式如下
W和b是我们要求解的parameters,W的shape为num_classes*num_classes,b就是一个bias
z是输入softmax的logits,也就是分类网络最后一层的输出。