【2024】Achilles-Bench:低资源评估的挑战性基准

(2024)阿基里斯基准:低资源评估的挑战性基准。 

Achilles-Bench: A Challenging Benchmark for Low-Resource Evaluation

期刊:Findings of the Association for Computational Linguistics ACL 2024, pages 2057–2080 August 11-16, 2024 ©2024 Association for Computational Linguistics

资源搜索:

@inproceedings{DBLP:conf/acl/WangMDSKX24,
  author       = {Yudong Wang and
                  Chang Ma and
                  Qingxiu Dong and
                  Zhifang Sui and
                  Lingpeng Kong and
                  Jingjing Xu},
  editor       = {Lun{-}Wei Ku and
                  Andre Martins and
                  Vivek Srikumar},
  title        = {Achilles-Bench: {A} Challenging Benchmark for Low-Resource Evaluation},
  booktitle    = {Findings of the Association for Computational Linguistics, {ACL} 2024,
                  Bangkok, Thailand and virtual meeting, August 11-16, 2024},
  pages        = {2057--2080},
  publisher    = {Association for Computational Linguistics},
  year         = {2024},
  url          = {https://aclanthology.org/2024.findings-acl.123},
  timestamp    = {Tue, 27 Aug 2024 17:38:11 +0200},
  biburl       = {https://dblp.org/rec/conf/acl/WangMDSKX24.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}

1.总结

该论文的主要内容是提出了一个具有挑战性的基准测试集 Achilles - Bench,用于低资源学习的评估。

  1. 研究背景:随着强大模型的发展,对低资源基准测试的需求增加,但现有的低资源数据集存在一些问题,如难以捕捉数据偏差和现实场景中的难度,导致对模型学习能力的评估不准确。
  2. 相关工作:介绍了低资源评估学习的相关研究,包括自然低资源数据集和采样低资源数据集,以及构建具有挑战性基准的方法。
  3. 理解低资源学习的难度:通过对感知机学习的教师 - 学生设置进行理论分析,探讨了影响低资源学习难度的因素,包括训练样本数量、数据分类难度和数据集偏差。
  4. Achilles - Bench 挑战:提出了 Achilles - Bench 基准测试,通过选择最具挑战性的低资源训练集来提升低资源学习的难度,并介绍了构建该基准测试的方法和使用的指标。
  5. 实验
    • 基准测试指标:定义了传统低资源基准测试和 Achilles - Bench 的测试设置。
    • 基准测试设置:在自然语言处理和计算机视觉任务上进行实验,包括选择数据集、模型和超参数设置等。
    • 结果:Achilles - Bench 能够误导神经网络,使其产生更差的泛化误差,表明该基准测试对现有模型构成了巨大挑战;预训练网络在计算机视觉基准测试上表现较好,但在处理自然语言处理任务时仍存在问题;Achilles - Bench(Loss)比 Achilles - Bench(GradNorm)更具挑战性;数据增强对模型性能有一定提升,但仍面临泛化挑战。
    • 消融研究:大规模采样无法找到具有挑战性的基准测试,选择的测试集能够捕捉神经网络的弱点,不同模型作为预测器的选择不会影响结论。
    • 可视化解释:Achilles - Bench 在低资源训练集中引入了偏差,并找到了具有挑战性的样本。
  6. 结论:Achilles - Bench 能够更好地揭示现有模型与随机采样的低资源数据集之间的学习差距,未来的研究可以将该方法扩展到更广泛的任务和数据集,并测试最新的模型。

2.分析

摘要

        由于在高资源环境中取得了有希望但饱和的结果,低资源数据集已逐渐成为评估高级神经网络学习能力的关键基准(例如 BigBench Hard、superGLUE)。在这项工作中,我们发现在资源匮乏的环境中存在一组“困难的例子”,这些例子对神经网络提出了挑战,但没有得到很好的评估,从而导致性能被高估。我们首先对哪些因素带来了低资源学习的困难进行了理论分析。这促使我们提出一个具有挑战性的基准 AchillesBench 来更好地评估学习能力,该基准涵盖 11 个数据集,包括 8 个自然语言处理(NLP)数据集和 3 个计算机视觉(CV)数据集。对各种模型的实验表明,神经网络,甚至是预先训练的语言模型,在我们的基准测试中性能急剧下降,这证明了评估神经网络弱点的有效性。在 NLP 任务上,我们惊讶地发现,尽管在传统的低资源基准上有更好的结果,但预训练网络在我们的基准上并没有表现出性能改进。现有模型与人类水平的表现之间仍然存在很大的鲁棒性差距,这凸显了对鲁棒的低资源学习模型的需求。

        【

在计算机软件和算法中,鲁棒性表现为对输入数据的各种异常情况的处理能力。例如:

  1. 一个图像识别算法具有鲁棒性,意味着它能够在图像存在噪声、模糊、光照变化等情况下依然准确地识别出图像中的对象。
  2. 软件系统具有鲁棒性,是指当遇到非法输入、硬件故障、网络中断等异常情况时,能够以合理的方式处理而不崩溃,并尽可能保持正常的功能运行。

  1. 研究背景

    • 随着大规模模型在高资源设置下取得有前景但饱和的结果,低资源数据集逐渐成为评估高级神经网络学习能力的关键基准(如 BigBench Hard、superGLUE 等)。
    • 许多低资源数据集通过随机或手动选择方法从清理和平衡的训练数据中采样,难以捕捉到现实世界场景中常见的数据偏差和增加的难度,导致无法准确评估现有模型与人类水平模型之间的真正学习差距。
    • 虽然一些模型在传统低资源基准测试上能超越人类性能(如 SST - 2),但许多研究表明这些模型仍面临诸如虚假关联或偏差等问题,在面对挑战性例子时,其性能与人类水平仍有较大偏差。
  2. 解决的问题

    • 发现低资源学习中存在的 “硬例子”,这些例子对神经网络构成挑战,但在现有低资源基准测试中未得到很好的评估,导致对模型性能的高估。
    • 提出一个更具挑战性的基准测试 Achilles - Bench,以更好地评估神经网络的学习能力,揭示模型的弱点,包括预训练语言模型和大型语言模型。
  3. 难点

    • 确定影响低资源学习难度的因素,并从理论上分析这些因素如何导致学习困难。
    • 构建一个能够有效捕捉数据偏差和难度的挑战性基准测试,使其能够准确评估模型在低资源学习中的真实能力,避免现有低资源基准测试的不足。
    • 确保构建的基准测试具有通用性,能够适用于各种任务和模型,并且能够有效地挑战包括强大的预训练模型在内的各种模型。
  4. 该论文的相关工作主要包括低资源评估学习以及构建具有挑战性基准的相关研究,具体内容如下:

    • 低资源评估学习
      • 自然低资源数据集:需要额外的数据集整理,目前大多数低资源基准是从较大的数据集中统一采样得到的。
      • 采样低资源数据集:采用迁移学习设置和上下文学习,并且增加了数据集的难度。
    • 构建挑战性基准
      • 以往方法:主要从自然数据中进行整理,需要大量注释,且存在人类感知难度与模型难以处理的样本不一致的问题。
      • 本文方法:创建了一个无需注释的框架来构建具有挑战性的训练集,能够快速应用于任何可用任务。与其他研究关注更全面和具有挑战性的任务列表不同,本文重点在于发现模型在常见任务上的弱点。
  5. 影响低资源学习难度的因素主要包括训练样本数量、数据分类难度和数据集偏差,具体分析如下:

    • 训练样本数量:通过对感知机学习的教师 - 学生设置进行理论分析,当训练样本数量较少时,模型需要更强的泛化能力,因为此时数据稀缺,模型难以从有限的样本中学习到全面的特征,从而导致学习难度增加。
    • 数据分类难度:数据分类难度由样本到决策边界的距离决定,距离越小,分类难度越大。通过在硬低资源学习设置中计算每个样本的边缘(margin),并选择边缘最小的样本,可以直观地体现数据分类难度对学习的影响。实验表明,增加数据难度会对低资源学习产生更大的影响,尤其是对于稍微大一些的训练集,泛化误差的增加更为明显。
    • 数据集偏差:这里主要指的是虚假关联(spurious correlation)导致的偏差,即数据项的外围属性与目标变量之间的相关性。在 biased low - resource learning 设置中,通过选择一个与教师有一定角度的偏差探针(biased probe)来模拟这种偏差。实验发现,低资源学习对虚假关联更为敏感,即使是较小的偏差,也会导致低资源学习的泛化能力下降,而对于拥有丰富数据的模型,这种影响相对较小。
  6.  基准构建方法:Achilles - Bench 的构造方法主要包括以下几个关键步骤:
    • 确定挑战目标

      目标是找到能够误导神经网络并产生更差泛化误差的训练集,以更好地评估模型在低资源情况下的学习能力,揭示现有模型与人类水平模型之间的真正学习差距。

    • 选择数据难度指标

      • GradNorm(梯度范数)
        • 衡量样本对模型梯度的影响程度。具体来说,对于一个给定的模型和样本,计算模型在该样本上的梯度,并计算梯度的范数。梯度越大,说明样本对模型的影响越大,可能意味着该样本更具挑战性
        • 例如,在训练神经网络时,如果某个样本使得模型的梯度非常大,那么这个样本可能在模型的学习过程中起到关键作用,也可能是模型难以正确处理的样本。
      • Loss Score(损失分数)
        • 样本在模型上的损失值。损失值越高,表明样本越难被模型正确分类。在训练过程中,模型的目标是最小化损失函数,因此损失值高的样本通常是模型难以学习的样本。
        • 例如,对于一个图像分类任务,如果某个图像样本在模型上的损失值很高,说明模型很难正确地将这个图像分类到正确的类别中。
    • 采样策略
      • 根据数据难度指标对整个数据集进行排序。可以分别按照 GradNorm 和 Loss Score 对数据集进行降序排序,这样难度较高的样本会排在前面。
      • 从排序后的数据集选择难度最高的样本组成低资源训练集。具体选择的样本数量根据低资源设置的要求确定,例如可以选择整个数据集的一小部分作为低资源训练集。
        • 例如,如果要构建一个包含 100 个样本的低资源训练集,可以从排序后的数据集中选择前 100 个样本。确保选择的低资源训练集能够最大程度地挑战模型。
    • 总结

      通过以上方法构建的 Achilles - Bench 基准测试,由于包含了最具挑战性的样本,所以能够更好地评估模型在低资源情况下的性能和学习能力。能够为评估神经网络在低资源学习中的表现提供更具挑战性的环境,帮助研究者更好地理解模型的弱点和改进方向。

       
  7. 评估指标
    • 传统低资源基准测试指标

      准确率(Accuracy):衡量模型在测试集上正确分类的比例。 F1 值(F1 score):综合考虑精确率和召回率的指标,适用于不平衡数据集的评估。

    • Achilles - Bench 指标

      • 泛化误差(Generalization Error)

        • 定义:比较模型在低资源训练集上训练后在测试集上的性能与在全量数据集上训练后的性能差异,反映了模型在低资源情况下的泛化能力。
        • 计算方法:通常可以用在低资源训练集上训练得到的模型在测试集上的错误率减去在全量数据集上训练得到的模型在测试集上的错误率。
        • 意义:如果泛化误差较大,说明模型在低资源情况下难以很好地泛化到测试集上,即模型的学习能力受到了限制。
      • 与随机采样的对比

        • 定义:通过与随机采样的低资源训练集进行比较,评估 Achilles - Bench 选择的训练集的挑战性是否显著高于随机选择的训练集。
        • 计算方法:可以比较在 Achilles - Bench 训练集和随机采样训练集上训练得到的模型在相同测试集上的性能指标,如准确率、F1 值或泛化误差等。然后通过统计检验(如 t 检验)来确定差异是否显著。
        • 意义:确保 Achilles - Bench 构建的低资源训练集确实具有更高的挑战性,能够更有效地评估模型在极端低资源情况下的性能。
    • 总结:Achilles - Bench 的构建方法和指标旨在更准确地评估模型在低资源学习中的真实能力,揭示模型的弱点,为进一步改进模型提供有价值的参考。

  8. 创新点:这篇论文的创新点主要包括以下方面:

    • 新的基准测试构建方法
      • 提出了一种基于数据难度指标来构建低资源基准测试(Achilles - Bench)的方法。传统的低资源基准测试通常随机选择数据,而该论文通过使用 GradNorm(梯度范数)和 Loss Score(损失分数)等数据难度指标,能够更有针对性地选择出对模型更具挑战性的样本组成低资源训练集,从而更真实地评估模型在低资源情况下的学习和泛化能力。
      • 这种方法可以揭示模型在处理困难样本时的弱点,以及在低资源学习中的真正差距,为模型的改进提供更明确的方向。
    • 全面的评估指标体系
      • 除了传统的准确率、F1 值等低资源基准测试指标外,引入了新的评估指标。其中,泛化误差指标通过比较模型在低资源训练集和全量数据集上训练后的性能差异,直接衡量了模型在低资源情况下的泛化能力,这有助于更深入地了解模型在资源受限场景下的性能表现。
      • 与随机采样的对比指标则验证了 Achilles - Bench 选择的训练集确实具有更高的挑战性,突出了该基准测试的有效性和独特性,能够更准确地评估模型在极端低资源情况下的性能。
    • 强调低资源学习的真实挑战
      • 关注到了现实中低资源学习场景的复杂性和特殊性,通过精心设计的基准测试和评估指标,试图更真实地反映模型在实际应用中可能面临的低资源问题。例如,在数据稀缺的情况下,模型如何应对困难样本、如何更好地泛化等,为研究人员提供了一个更贴近实际的评估框架,有助于推动模型在低资源环境下的性能提升和实际应用。
  9. 缺点以及未来改进方向:
    •  

      缺点

      • 数据集的局限性:论文中构建基准测试所使用的数据集可能具有一定的局限性,不一定能完全代表所有类型的低资源学习场景。不同领域和任务的数据特点差异较大,可能需要在更多样化的数据集上进行验证和评估,以确保方法的通用性和广泛适用性。
      • 缺乏对模型结构的深入探讨:虽然论文重点关注了低资源学习的评估,但对于不同模型结构在低资源情况下的表现和适应性缺乏深入的对比和分析。不同的模型结构可能对低资源数据有不同的敏感度和学习能力,进一步研究模型结构与低资源学习的关系,有助于设计更适合低资源场景的模型。
      • 计算资源需求:使用复杂的数据难度指标和采样策略可能需要较高的计算资源和时间成本,这在一定程度上可能限制了其在大规模数据或资源受限环境中的实际应用。
    • 未来改进方向

      • 拓展数据集和任务类型:使用更多不同领域、不同特点的数据集来构建基准测试,包括图像、文本、语音等各种类型的数据,以及涵盖更多实际任务,如医疗诊断、金融预测等,以提高方法的通用性和实际应用价值。
      • 深入研究模型结构与低资源学习的关系:探索不同模型结构(如卷积神经网络、循环神经网络等)在低资源场景下的优势和劣势,以及如何针对低资源学习进行模型结构的优化和改进,例如设计更高效的网络架构、参数共享机制等,以提高模型在低资源下的性能。
      • 优化计算效率:研究更高效的算法和技术,降低构建基准测试和使用评估指标过程中的计算复杂度和时间成本,使其更易于在实际中应用和推广。例如,探索近似计算方法、分布式计算策略等,以在保证评估准确性的前提下提高计算效率。
      • 结合其他技术和方法:可以考虑将该论文的方法与其他先进的机器学习技术(如元学习、迁移学习等)相结合,进一步提升模型在低资源学习中的性能。例如,利用元学习来快速适应新的低资源任务,或者通过迁移学习从相关的高资源任务中获取有用信息,以帮助模型在低资源下更好地学习和泛化。

        

        

  • 11
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值