根据目前的设计理论,混凝土梁在荷载下的变形主要受到以下方面的影响:
- 材料性质,包括混凝土拉压强度,钢筋强度以及各种材料的弹性模量等
- 截面属性,包括截面形状,钢筋布置等
- 裂缝对截面性能的削弱
- 混凝土材料性能的时间效应,包括徐变,收缩等
- 梁的制作工艺,包括一次浇筑,二次浇筑,预应力等
综上,精确计算混凝土梁的挠度取决于对材料,截面以及制作工艺的把控。单从截面角度来说,想要准确获得截面各项性质,包括开裂截面刚度,长期截面刚度,复合截面性质,截面开裂弯矩等,都需要较复杂的分析。
AdSec 是一款专业的截面分析的软件,由 Oasys 公司开发。本系列文章将介绍如何使用 AdSec 获得相应的截面性质。这篇文章将介绍在 AdSec 软件里截面开裂弯矩,以及未开裂截面的长期以及短期刚度的计算。
1. 未开裂截面的短期刚度
在 AdSec 里,短期截面性质可以通过运行截面分析得到,分析前确认选择短期分析。分析结果提供对应截面的 M-Stiffness 图,以及 M-Curvature 图(如下图)。
实际上,这两张图存在对应关系,由梁的分析可知,弯矩,抗弯刚度以及曲率有如下关系:
(1)
因此右图某一 M 值处的切线斜率即为左图中对应 M 值的纵坐标值。
从左图中,我们可以看到函数曲线由平直段和下降段组成。平直段表示抗弯刚度无削弱,因此,平直段的抗弯刚度值即为短期未开裂截面的抗弯刚度。
另外要提的一点是,这里的抗弯刚度是全截面的抗弯刚度,包括了钢筋,记为 或者 。截面各个阶段的抗弯刚度大致如下图示意。
2. 未开裂截面的长期刚度
未开裂截面的长期刚度的确定与短期刚度的流程类似。AdSec 通过徐变系数来考虑材料的长期性质变化。引入徐变系数后,截面在某一应力水平下的应变需要附加对应的长期应变。总应变,荷载应变和附加应变的关系如下式所示:
(2)
由上式可知,引入徐变系数 后,等效弹性模量变为折减的弹性模量,即:
(3)
AdSec 便是通过引入折减后的弹性模量来考虑长期效应。由于截面的抗弯刚度变小,因此长期状态下的开裂弯矩也会小于短期状态下的开裂弯矩。
3. 开裂弯矩
开裂弯矩同样可以通过左图中平直段右端点的横坐标值得到,它同时也是右图中斜线转折点对应的纵坐标值。
由上述(1)式可知,开裂弯矩和截面抗弯刚度通过曲率对应。在 AdSec 中,曲率可以通过截面受拉边缘处的应变以及中和轴高度求出。
设截面边缘距离中和轴距离为 ,截面受拉边缘处应力为 ,那么曲率 可由下式求得:
(4)
在短期效应中, 限值为 1MPa,E 为混凝土弹性模量。在长期效应中, 限值为 0.466MPa,E 为混凝土考虑徐变系数后的等效弹性模量。需要提出的是,虽然规范允许在考虑长期效应时,在截面受拉钢筋合力点处的混凝土可以有最大 0.55MPa 的抗拉强度,但是考虑到混凝土受拉刚化效应不能长期稳定存在,AdSec 保守使用了低于规范的限值的混凝土抗拉强度,且取值在截面受拉边缘处。
本文总结了 AdSec 中获取截面未开裂刚度以及确定开裂弯矩的方法。开裂弯矩的确定对工程师理解混凝土截面性能有重要意义,也是后续考虑梁开裂的变形性能分析的基础。而未开裂截面的短期和长期截面刚度则显示了 AdSec 通过等效弹性模量考虑混凝土长期效应的方法。