AdSec 中梁截面的未开裂刚度以及开裂弯矩计算

文章介绍了AdSec软件如何用于计算混凝土梁的未开裂截面的短期和长期刚度以及开裂弯矩。通过截面分析,AdSec考虑了材料性质、截面设计和制作工艺等因素,尤其强调了徐变对长期刚度的影响。开裂弯矩的确定对评估梁的性能至关重要,而AdSec提供了精确的计算方法。
摘要由CSDN通过智能技术生成

根据目前的设计理论,混凝土梁在荷载下的变形主要受到以下方面的影响:

  • 材料性质,包括混凝土拉压强度,钢筋强度以及各种材料的弹性模量等
  • 截面属性,包括截面形状,钢筋布置等
  • 裂缝对截面性能的削弱
  • 混凝土材料性能的时间效应,包括徐变,收缩等
  • 梁的制作工艺,包括一次浇筑,二次浇筑,预应力等

综上,精确计算混凝土梁的挠度取决于对材料,截面以及制作工艺的把控。单从截面角度来说,想要准确获得截面各项性质,包括开裂截面刚度,长期截面刚度,复合截面性质,截面开裂弯矩等,都需要较复杂的分析。

AdSec 是一款专业的截面分析的软件,由 Oasys 公司开发。本系列文章将介绍如何使用 AdSec 获得相应的截面性质。这篇文章将介绍在 AdSec 软件里截面开裂弯矩,以及未开裂截面的长期以及短期刚度的计算。

1. 未开裂截面的短期刚度

 在 AdSec 里,短期截面性质可以通过运行截面分析得到,分析前确认选择短期分析。分析结果提供对应截面的 M-Stiffness 图,以及 M-Curvature 图(如下图)。

实际上,这两张图存在对应关系,由梁的分析可知,弯矩,抗弯刚度以及曲率有如下关系:

M= EI \times \kappa (1)

因此右图某一 M 值处的切线斜率即为左图中对应 M 值的纵坐标值。

从左图中,我们可以看到函数曲线由平直段和下降段组成。平直段表示抗弯刚度无削弱,因此,平直段的抗弯刚度值即为短期未开裂截面的抗弯刚度。

另外要提的一点是,这里的抗弯刚度是全截面的抗弯刚度,包括了钢筋,记为 I_{gross} 或者 I_{g} 。截面各个阶段的抗弯刚度大致如下图示意。

 2. 未开裂截面的长期刚度

未开裂截面的长期刚度的确定与短期刚度的流程类似。AdSec 通过徐变系数来考虑材料的长期性质变化。引入徐变系数后,截面在某一应力水平下的应变需要附加对应的长期应变。总应变,荷载应变和附加应变的关系如下式所示:

\varepsilon_{total} = \frac{\sigma }{E} + \varphi \frac{\sigma }{E} (2)

由上式可知,引入徐变系数 \varphi 后,等效弹性模量变为折减的弹性模量,即:

E_{long}=\frac{E}{1+\varphi } (3)

AdSec 便是通过引入折减后的弹性模量来考虑长期效应。由于截面的抗弯刚度变小,因此长期状态下的开裂弯矩也会小于短期状态下的开裂弯矩。

3. 开裂弯矩

开裂弯矩同样可以通过左图中平直段右端点的横坐标值得到,它同时也是右图中斜线转折点对应的纵坐标值。

由上述(1)式可知,开裂弯矩和截面抗弯刚度通过曲率对应。在 AdSec 中,曲率可以通过截面受拉边缘处的应变以及中和轴高度求出。

设截面边缘距离中和轴距离为 d ,截面受拉边缘处应力为 \sigma ,那么曲率 \kappa 可由下式求得:

\kappa = \frac{\sigma}{E\times d} (4)

在短期效应中,\sigma 限值为 1MPa,E 为混凝土弹性模量。在长期效应中,\sigma 限值为 0.466MPa,E 为混凝土考虑徐变系数后的等效弹性模量。需要提出的是,虽然规范允许在考虑长期效应时,在截面受拉钢筋合力点处的混凝土可以有最大 0.55MPa 的抗拉强度,但是考虑到混凝土受拉刚化效应不能长期稳定存在,AdSec 保守使用了低于规范的限值的混凝土抗拉强度,且取值在截面受拉边缘处。

本文总结了 AdSec 中获取截面未开裂刚度以及确定开裂弯矩的方法。开裂弯矩的确定对工程师理解混凝土截面性能有重要意义,也是后续考虑梁开裂的变形性能分析的基础。而未开裂截面的短期和长期截面刚度则显示了 AdSec 通过等效弹性模量考虑混凝土长期效应的方法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值