同余方程 ax≡1(mod b) & POJ 1061 青蛙的约会


题目:求 ax%b=c 最小正整数x解,题目中的 c =1。
先感谢两位大犇ngncmh笑巧


对于一般的问题,我们通常有两种做法:

1) Baby Step Giant Step(BSGS)

定义Block为一个适中的常数,假设我们知道了 [0,Block1] ia%b 的值,就可以直接把区间分成: [Block,2Block1] [2Block,3Block1] ……
然后我们就可以对题目进行推导(ノ*・ω・)ノ:

p=iM+k(0<=k<M)
c=ap%b=a(iM+k)%b=1
ak%b=1aiM

接下来就开始枚举 i ,如果出现符合题意的值,就可以得到最小整数解x了。而上述求得的[0,Block1] ia%b 的值,可以用map映射。

#include<iostream>
#include<algorithm>
#include<cstring>
#include<map>
using namespace std;
const long long M=100000;
const long long P=2e9;
map<long long,int>Map;
int main(){
    long long a,b,c;
    cin>>a>>b;
    Map.clear();
    for(long long i=0;i<M;i++){
        c=a*i%b;
        if(c==1){
            cout<<i<<endl;
            return 0;
        }
        if(Map.find(c)==Map.end())Map[c]=i;
    }
/*
    p=i*M+k(0<=k<M),
    c=a*p%b=a*(i*M+k)%b=1;
    a*k%b=1-a*i*M;
*/
    for(long long i=M;i<=P;i+=M){
        c=(1LL-a*i)%b;
        if(c<0)c+=b;
        if(Map.find(c)!=Map.end()){
            cout<<Map[c]+i<<endl;
            return 0;
        }
    }
    return 0;
}

2) 扩展欧几里得算法(extended gcd)

首先变形原式:

axd%b>ax+by=d(x,yZ)>adx+bdy=1
adx1(%bd)
如果 ad%bd1 ,说明不可能会有1的解(例如 ad bd 均含有因子2,则取模后的结果只可能是2的倍数),所以 ad%bd=1 ,由上述推论也可知 gcd(ad,bd)1 (整除)。
接着利用欧几里得算法可以求出一组特解 x,y ,所有的解属于 y={x+bdkkZ} ,根据求出的特解可以得到最小正整数解。

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
LL a,b,t,x,y;//ax+by=t
void gcd(LL a,LL b,LL &t,LL &x,LL &y){
    if(!b){t=a;x=1;y=0;}//边界:gcd(a,0)=1*a+0*0=a
    else{gcd(b,a%b,t,y,x);y-=x*(a/b);}
}
int main(){
    cin>>a>>b;
    gcd(a,b,t,x,y);
    if(t!=1)cout<<"No answer"<<endl;
    else cout<<(x%b+b)%b<<endl;
    return 0;
}

同余方程有三条定理:
定理一:若 gcd(a,b)=d ,则必能找到整数集中的 k l,使 d=ax+by
定理二:若 gcd(a,b)=1 ,则方程 axc(%b) [0,b1] 上有唯一解;
定理三:若 gcd(a,b)=d ,则方程 axc(%b) [0,bd1] 上有唯一解。


同余方程运用: 青蛙的约会

按照上述方法推出: (nm)t%L=(xy) ,如果 (xy)%gcd(nm,L)=0 ,方程有解。

其实听起来还是挺难懂。对于欧几里得函数的理解建议看这篇同类型的文章:NOI Openjudge 4975 两只鼹鼠。(事实证明理解清楚需要哪些部分后再写一遍真TM水)

#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
LL gcd(LL a,LL b,LL &x,LL &y){
    if(!b){x=1;y=0;return a;}//gcd(a,0)=1*a+0*0=a
    else{
        LL ans=gcd(b,a%b,x,y);
        LL t=x;x=y;y=t-(a/b)*y;
        return ans;
    }
}//扩展欧几里得算法 
int main(){
    LL x,y,m,n,L,x0,y0;
    cin>>x>>y>>m>>n>>L;
    //(x+tm)-(y+tn)=kL->(n-m)*t+L*k=(x-y)=>(n-m)t%L=(x-y)
    //if (x-y)%gcd(n-m,L)==0,方程有解
    int ans=gcd((n-m),L,x0,y0);//不能写成gcd((n-m)/(x-y),L/(x-y),x0,y0)
    if((x-y)%ans!=0)cout<<"Impossible"<<endl;
    else{
//      cout<<x0<<' '<<y0<<endl;
        x0=x0*(x-y)/ans;
        LL r=L/ans;
        cout<<(x0%r+r)%r<<endl;
    }
    return 0;
}

// 16/10/31 更新一版写法
#include <cstdio>
template <class temp>
inline temp _abs(temp a){
    return a<0?-a:a;
}
template <class temp>
inline void swap(temp &a,temp &b){
    temp t=a;a=b;b=t;
}
int exgcd(int a,int b,long long &x,long long &y){
    if(!b){x=1,y=0;return a;}
    int gcd=exgcd(b,a%b,y,x);
    y-=(a/b)*x;
    return gcd;
}
int query(int a,int b,int c){
    long long x,y;
    int gcd=exgcd(a,b,x,y);
    if(c%gcd)return -1;
    x*=c/gcd;
    b=_abs(b/gcd);
    return (int)(x%b+b)%b;
}
int main(){
    int a,b,n,m,L;
    scanf("%d %d %d %d %d",&a,&b,&n,&m,&L);
    if(n<m)swap(n,m),swap(a,b);
    int x=query(n-m,L,b-a);
    if(!~x)puts("Impossible");
    else printf("%d\n",x);
}

总结:同余方程的重要部分是公式变形、欧几里得函数使用两处,解决的问题应能得到 ax+by=c 的变形。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值