剑指offer | # 数组中的逆序对

数组中的逆序对

描述

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007。

代码 (Java)
public class Solution {
    public int InversePairs(int [] array) {
        if (array == null || array.length == 0)
            return 0;

        int[] copy = new int[array.length];
        for (int i = 0; i < array.length; ++i) {
            copy[i] = array[i];
        }
        // 如果需要得到array的最终排序结果,下面入口需要调换参数位置:InversePairsMerge(copy, array,...
        return InversePairsMerge(array, copy, 0, array.length - 1)%1000000007;
    }

    public int InversePairsMerge(int[] array, int[] copy, int start, int end) {
        if (start == end) {
            copy[start] = array[start];
            return 0;
        }

        int length = (end - start) / 2;

        // 注意这里递归时候的copy和array的顺序,很巧妙的方法,互为作辅助,不需要多次拷贝辅助数组的元素到原数组
        int left = InversePairsMerge(copy, array, start, start + length);
        int right = InversePairsMerge(copy, array, start + length + 1, end);

        // i初始化为前半段最后一个数字的下标,即p1
        int i = start + length;
        // j初始化为后半段最后一个数字的下标,即p2
        int j = end;
        // 辅助的数组从后往前填
        int indexCopy = end;
        int count = 0;
        while (i >= start && j >= start + length + 1) {
            // 左边的数大于右边的数,需要计算逆序数目
            if (array[i] > array[j]) {
                copy[indexCopy--] = array[i--];
                count += j - start - length;
                if (count >= 1000000007) {
                    count %= 1000000007;    // 数值过大取余
                }
            } else {
                copy[indexCopy--] = array[j--];
            }
        }
        // 把剩余的数组填到辅助数组
        for (; i >= start; --i)
            copy[indexCopy--] = array[i];
        for (; j >= start + length + 1; --j)
            copy[indexCopy--] = array[j];

        return (left + right + count) % 1000000007; // 数值过大取余
    }
}
思路
  • 这里用到了归并排序的思想,用了O(n)的辅助空间,时间复杂度是O(nlogn),比直观的穷举法O(n^2)要快;
  • 先把数组分割成子数组,统计出子数组内部的逆序对的数目,然后再统计出两个相邻子数组之间的逆序对的数目。在统计逆序对的过程中,需要对数组进行排序。有序之后,可以减少一些比较逆序的次数;
  • 这是按照书中的代码写的,有个很巧妙的地方是,递归时候调换copy和array的顺序,互为作辅助,不需要多次拷贝辅助数组的元素到原数组:InversePairsMerge(copy, array,...,这样也保证了只用到O(n)的辅助空间。如果需要得到array的最终排序结果,入口也需要调换参数位置。
  • 最后需要注意的点是对数值过大的情况取余。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值