数组中的逆序对
描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007。
代码 (Java)
public class Solution {
public int InversePairs(int [] array) {
if (array == null || array.length == 0)
return 0;
int[] copy = new int[array.length];
for (int i = 0; i < array.length; ++i) {
copy[i] = array[i];
}
// 如果需要得到array的最终排序结果,下面入口需要调换参数位置:InversePairsMerge(copy, array,...
return InversePairsMerge(array, copy, 0, array.length - 1)%1000000007;
}
public int InversePairsMerge(int[] array, int[] copy, int start, int end) {
if (start == end) {
copy[start] = array[start];
return 0;
}
int length = (end - start) / 2;
// 注意这里递归时候的copy和array的顺序,很巧妙的方法,互为作辅助,不需要多次拷贝辅助数组的元素到原数组
int left = InversePairsMerge(copy, array, start, start + length);
int right = InversePairsMerge(copy, array, start + length + 1, end);
// i初始化为前半段最后一个数字的下标,即p1
int i = start + length;
// j初始化为后半段最后一个数字的下标,即p2
int j = end;
// 辅助的数组从后往前填
int indexCopy = end;
int count = 0;
while (i >= start && j >= start + length + 1) {
// 左边的数大于右边的数,需要计算逆序数目
if (array[i] > array[j]) {
copy[indexCopy--] = array[i--];
count += j - start - length;
if (count >= 1000000007) {
count %= 1000000007; // 数值过大取余
}
} else {
copy[indexCopy--] = array[j--];
}
}
// 把剩余的数组填到辅助数组
for (; i >= start; --i)
copy[indexCopy--] = array[i];
for (; j >= start + length + 1; --j)
copy[indexCopy--] = array[j];
return (left + right + count) % 1000000007; // 数值过大取余
}
}
思路
- 这里用到了归并排序的思想,用了O(n)的辅助空间,时间复杂度是O(nlogn),比直观的穷举法O(n^2)要快;
- 先把数组分割成子数组,统计出子数组内部的逆序对的数目,然后再统计出两个相邻子数组之间的逆序对的数目。在统计逆序对的过程中,需要对数组进行排序。有序之后,可以减少一些比较逆序的次数;
- 这是按照书中的代码写的,有个很巧妙的地方是,递归时候调换copy和array的顺序,互为作辅助,不需要多次拷贝辅助数组的元素到原数组:
InversePairsMerge(copy, array,...
,这样也保证了只用到O(n)的辅助空间。如果需要得到array的最终排序结果,入口也需要调换参数位置。 - 最后需要注意的点是对数值过大的情况取余。