离散数学复习笔记——图的着色

图的着色

着色

着色:给图的某类元素(点,边,面)中的每个指定1种颜色,使得相邻元素有不同颜色

点着色

k-可着色的:能用k种颜色着色

k-色图:是k-可着色的,不是(k-1)可着色的

点色数:着色所需的最少颜色数,记作 χ ( G ) \chi(G) χ(G)

常见图的点色数

  • χ ( G ) = 1 ⇔ G 是 零 图 \chi(G)=1\Harr G是零图 χ(G)=1G

  • χ ( K n ) = N \chi(K_n)=N χ(Kn)=N

  • χ ( G ) = 2 ⇔ G 是 非 零 图 二 部 图 \chi(G)=2 \Harr G是非零图二部图 χ(G)=2G

  • G 是 2 − 可 着 色 的 ⇔ G 是 二 部 图 ⇔ G 无 奇 圈 G是2-可着色的\Harr G是二部图 \Harr G无奇圈 G2GG

  • χ ( C n ) = { 2 n 偶 数 3 n 奇 数 \chi(C_n)= \begin {cases} 2 & n偶数\\ 3 & n奇数 \end {cases} χ(Cn)={23nn

  • χ ( W n ) = { 3 n 奇 数 4 n 偶 数 \chi(W_n)= \begin {cases} 3 & n奇数\\ 4 & n偶数 \end {cases} χ(Wn)={34nn

定理12.7:对图G进行 χ ( G ) − 着 色 \chi(G)-着色 χ(G),得到不同着色的点集为划分

定理12.5 χ ( G ) ≤ Δ ( G ) + 1 \chi(G)\le \varDelta(G)+1 χ(G)Δ(G)+1

定理12.6:若连通图G不是完全图 K n ( n ≥ 3 ) K_n(n\ge3) Kn(n3)也不是奇圈,则 χ ( G ) ≤ Δ ( G ) \chi(G)\le\varDelta(G) χ(G)Δ(G)

Peterson图

由定理12.6 小于等于3

由奇圈,则大于等于3

综上,点色数为3

安排期末考试问题

顶点代表课,边代表这些课有公共学生,染色数代表排课时间段

地图的着色与平面图的点着色

地图:连通无桥平面图的平面嵌入及其所有的面称为(平面)地图

k-面可着色:可用k种颜色对平面地图着色

k-色地图:n是k-面可着色的,但不是(k-1)-面可着色的

面色数 χ ∗ ( G ) \chi^*(G) χ(G)

定理12.13

定理12.13:地图G是k-面可着色的⇔ 对偶图G*是k-可着色的.

四色定理

定理12.17:任何平面图都是4-可着色的

边着色

边色数 χ ′ ( G ) \chi'(G) χ(G)

定理12.17:G是简单图,则 Δ ( G ) ≤ χ ′ ( G ) ≤ Δ ( G ) + 1 \varDelta(G)\le\chi'(G)\le\varDelta(G)+1 Δ(G)χ(G)Δ(G)+1

G = < V 1 , V 2 , E > 是 二 部 图 , 则 χ ′ ( G ) = Δ ( G ) G=<V_1,V_2,E>是二部图,则\chi'(G)=\varDelta(G) G=<V1,V2,E>χ(G)=Δ(G)

n>1时,
χ ′ ( K n ) = { Δ ( G ) + 1 = n n 为 奇 数 Δ ( G ) = n − 1 n 为 偶 数 \chi'(K_n)= \begin{cases} \varDelta(G)+1=n &n为奇数\\ \varDelta(G)=n-1 &n为偶数 \end{cases} χ(Kn)={Δ(G)+1=nΔ(G)=n1nn

排课问题

n个教师排m个班的课 ,每个老师每次只能给1个班上课,每个班每次只能听1个老师上课,则利用

二部图,至少排多少课为边色数,同色边代表上课可以同时进行

当节数不增加时,需要教室数最少,不同染色方案时同色边数量最大的值最小

n结论:有l门课程,被安排在p节课中,则每节课时平均有l/p门课同时上课,可以证明如下结论成立:

总存在一个排课方案,使得任意一节课时最多使用{l/p}间教室。

色多项式

f ( G , k ) = G 的 不 同 k − 着 色 方 案 的 总 数 f(G,k)=G的不同k-着色方案的总数 f(G,k)=Gk

求色数多项式

零图 f ( N n , k ) = k n f(N_n,k)=k^n f(Nn,k)=kn

完全图 f ( K n , k ) = k ( k − 1 ) . . . ( k − n 1 ) = n ! C k n f(K_n,k)=k(k-1)...(k-n_1)=n!C^n_k f(Kn,k)=k(k1)...(kn1)=n!Ckn

推论: f ( K n , k ) = f ( K n − 1 , k ) ( k − n + 1 ) ) , n ≥ 2 f(K_n,k)=f(K_{n-1,k})(k-n+1)),n\ge2 f(Kn,k)=f(Kn1,k)(kn+1)),n2

色多项式递推公式

定理12.9 f ( G , k ) = f ( G   U   e , k ) + f ( G / e , k ) , e ∉ E ( G ) f(G,k)=f(G\ U\ e,k)+f(G/e,k),e\notin E(G) f(G,k)=f(G U e,k)+f(G/e,k),e/E(G)

f ( G , k ) = f ( G − e , k ) − f ( G / e , k ) , e ∈ E ( G ) f(G,k)=f(G-e,k)-f(G/e,k),e\in E(G) f(G,k)=f(Ge,k)f(G/e,k),eE(G)

色多项式的性质

  • 各项系数的符号是正负交替的
  • k n k^n kn项的系数是1
  • k n − 1 k^{n-1} kn1项系数是-m,m是G中的边数
  • k 0 k^0 k0项的系数是0
  • 系数非0项的最低次幂是 k p k^p kp,p是连通分支数

定理12.11

T是n阶树 ⇔ f ( T , k ) = k ( k − 1 ) n − 1 \Harr f(T,k)=k(k-1)^{n-1} f(T,k)=k(k1)n1

定理12.12

f ( C n , k ) = ( k − 1 ) n + ( − 1 ) n ( k − 1 ) f(C_n,k)=(k-1)^n+(-1)^n(k-1) f(Cn,k)=(k1)n+(1)n(k1)

  • 3
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值