图的着色
文章目录
着色
着色:给图的某类元素(点,边,面)中的每个指定1种颜色,使得相邻元素有不同颜色
点着色
k-可着色的:能用k种颜色着色
k-色图:是k-可着色的,不是(k-1)可着色的
点色数:着色所需的最少颜色数,记作 χ ( G ) \chi(G) χ(G)
常见图的点色数
-
χ ( G ) = 1 ⇔ G 是 零 图 \chi(G)=1\Harr G是零图 χ(G)=1⇔G是零图
-
χ ( K n ) = N \chi(K_n)=N χ(Kn)=N
-
χ ( G ) = 2 ⇔ G 是 非 零 图 二 部 图 \chi(G)=2 \Harr G是非零图二部图 χ(G)=2⇔G是非零图二部图
-
G 是 2 − 可 着 色 的 ⇔ G 是 二 部 图 ⇔ G 无 奇 圈 G是2-可着色的\Harr G是二部图 \Harr G无奇圈 G是2−可着色的⇔G是二部图⇔G无奇圈
-
χ ( C n ) = { 2 n 偶 数 3 n 奇 数 \chi(C_n)= \begin {cases} 2 & n偶数\\ 3 & n奇数 \end {cases} χ(Cn)={ 23n偶数n奇数
-
χ ( W n ) = { 3 n 奇 数 4 n 偶 数 \chi(W_n)= \begin {cases} 3 & n奇数\\ 4 & n偶数 \end {cases} χ(W