离散数学复习笔记——图的着色

图的着色

着色

着色:给图的某类元素(点,边,面)中的每个指定1种颜色,使得相邻元素有不同颜色

点着色

k-可着色的:能用k种颜色着色

k-色图:是k-可着色的,不是(k-1)可着色的

点色数:着色所需的最少颜色数,记作 χ ( G ) \chi(G) χ(G)

常见图的点色数

  • χ ( G ) = 1 ⇔ G 是 零 图 \chi(G)=1\Harr G是零图 χ(G)=1G

  • χ ( K n ) = N \chi(K_n)=N χ(Kn)=N

  • χ ( G ) = 2 ⇔ G 是 非 零 图 二 部 图 \chi(G)=2 \Harr G是非零图二部图 χ(G)=2G

  • G 是 2 − 可 着 色 的 ⇔ G 是 二 部 图 ⇔ G 无 奇 圈 G是2-可着色的\Harr G是二部图 \Harr G无奇圈 G2GG

  • χ ( C n ) = { 2 n 偶 数 3 n 奇 数 \chi(C_n)= \begin {cases} 2 & n偶数\\ 3 & n奇数 \end {cases} χ(Cn)={ 23nn

  • χ ( W n ) = { 3 n 奇 数 4 n 偶 数 \chi(W_n)= \begin {cases} 3 & n奇数\\ 4 & n偶数 \end {cases} χ(W

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值