numpy学习 --属性和常用操作

1.数据类型对象

   numpy.dtype(object, align, copy)

  • object - 要转换为的数据类型对象
  • align - 如果为 true,填充字段使其类似 C 的结构体。
  • copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用

2.ndarray对象属性

属性说明
ndarray.ndim秩,即轴的数量或维度的数量
ndarray.shape数组的维度,对于矩阵,n 行 m 列
ndarray.size数组元素的总个数,相当于 .shape 中 n*m 的值
ndarray.dtypendarray 对象的元素类型
ndarray.itemsizendarray 对象中每个元素的大小,以字节为单位
ndarray.flagsndarray 对象的内存信息
ndarray.realndarray元素的实部
ndarray.imagndarray 元素的虚部
ndarray.data包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

3.numpy的切片和索引

ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。

3.1  slice(start,stop,step )函数

例:

import numpy as np

a = np.arange(10)

s = slice(2,7,2) # 从索引 2 开始到索引 7 停止,间隔为2

print (a[s])

3.2 通过冒号分隔切片参数 start:stop:step 来进行切片操作

例:

b = a[2:7:2]

print b

3.3 冒号 : 的解释:如果只放置一个参数,如 [2],将返回与该索引相对应的单个元素。如果为 [2:],表示从该索引开始以后的所有项都将被提取。如果使用了两个参数,如 [2:7],那么则提取两个索引(不包括停止索引)之间的项。

a[5]   ---5

a[2:]   ---[2 3 4 5 6 7 8 9]

a[2:5]   ---[2 3 4]

3.4 切片还可以包括省略号 …,来使选择元组的长度与数组的维度相同。 如果在行位置使用省略号,它将返回包含行中元素的 ndarray。

例:

import numpy as np

a = np.array([[1,2,3],[3,4,5],[4,5,6]])

print (a[...,1]) # 第2列元素

print (a[1,...]) # 第2行元素

print (a[...,1:]) # 第2列及剩下的所有元素

输出结果为:

[2 4 5]
[3 4 5]
[[2 3]
 [4 5]
 [5 6]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值