刷题day46:修剪二叉搜索树

题意描述:

给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。

所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。

 递归法:

完整C++代码如下:

class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if(root == NULL) return NULL;
        if(root->val < low){
            TreeNode* right = trimBST(root->right, low, high);
            return right;
        }
        if(root->val > high){
            TreeNode* left = trimBST(root->left, low, high);
            return left;
        }

        //相当于用节点的左孩子把下一层返回的节点的右孩子接住
        root->left = trimBST(root->left, low, high);
        //相当于用节点的右孩子把下一层返回的节点的左孩子接住
        root->right = trimBST(root->right, low, high);
        return root;
    }
};

迭代法:

完整C++代码如下:

class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if(root == NULL) return NULL;
        while(root != NULL && (root->val < low || root->val > high)){
            if(root->val < low) root = root->right;
            else root = root->left;
        }
        TreeNode* cur = root;
        // 此时root已经在[L, R] 范围内,处理左孩子元素小于L的情况
        while(cur != NULL){
            while(cur->left && cur->left->val < low){
                cur->left = cur->left->right;
            }
            cur = cur->left;
        }
        cur = root;
        
        // 此时root已经在[L, R] 范围内,处理右孩子大于R的情况
        while(cur != NULL){
            while(cur->right && cur->right->val > high){
                cur->right = cur->right->left;
            }
            cur = cur->right;
        }
        return root;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值