题意描述:
给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
思路:利用深度优先算法
-
遍历整个网格的每个点,若遇到值为 ‘1’ 的点,则计数器加一,并且以这个点为起点,开始 DFS 遍历其相邻的点。
-
对于每个遍历到的点,若其值为 ‘1’,则将其设为 ‘0’,表示已经被访问过,并向上下左右四个方向继续 DFS。
-
直到遍历完所有相邻的 ‘1’,返回上一层递归。
-
继续遍历整个网格,直到所有的 ‘1’ 都被访问过。
完整C++代码如下:
class Solution {
private:
void dfs(vector<vector<char>>& grid, int i, int j){
if(i < 0 || i >= grid.size() || j < 0 || j >= grid[0].size() || grid[i][j] == '0'){
return;
}
grid[i][j] = '0';
dfs(grid, i - 1, j);
dfs(grid, i + 1, j);
dfs(grid, i, j - 1);
dfs(grid, i, j + 1);
}
public:
int numIslands(vector<vector<char>>& grid) {
if(grid.empty()){
return 0;
}
int m = grid.size();
int n = grid[0].size();
int count = 0;
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
if(grid[i][j] == '1'){
count++;
dfs(grid, i, j);
}
}
}
return count;
}
};
思路二:利用并查集
先定义了一个并查集的类 UnionFind。在类中实现了并查集的基本操作,包括初始化父节点和秩(rank)数组、查找根节点的函数 find() 和合并两个连通分量的函数 unite()。
接着遍历整个网格,对于每个格子如果是1(表示陆地),则将其和上下左右相邻的陆地合并。
完整C++代码如下:
class UnionFind {
public:
UnionFind(vector<vector<char>>& grid) {
count = 0;
int m = grid.size();
int n = grid[0].size();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
parent.push_back(i * n + j);
++count;
}
else {
parent.push_back(-1);
}
rank.push_back(0);
}
}
}
int find(int i) {
if (parent[i] != i) {
parent[i] = find(parent[i]);
}
return parent[i];
}
void unite(int x, int y) {
int rootx = find(x);
int rooty = find(y);
if (rootx != rooty) {
if (rank[rootx] < rank[rooty]) {
swap(rootx, rooty);
}
parent[rooty] = rootx;
if (rank[rootx] == rank[rooty]) rank[rootx] += 1;
--count;
}
}
int getCount() const {
return count;
}
private:
vector<int> parent;
vector<int> rank;
int count;
};
class Solution {
public:
int numIslands(vector<vector<char>>& grid) {
int nr = grid.size();
if (!nr) return 0;
int nc = grid[0].size();
UnionFind uf(grid);
int num_islands = 0;
for (int r = 0; r < nr; ++r) {
for (int c = 0; c < nc; ++c) {
if (grid[r][c] == '1') {
grid[r][c] = '0';
if (r - 1 >= 0 && grid[r-1][c] == '1') uf.unite(r * nc + c, (r-1) * nc + c);
if (r + 1 < nr && grid[r+1][c] == '1') uf.unite(r * nc + c, (r+1) * nc + c);
if (c - 1 >= 0 && grid[r][c-1] == '1') uf.unite(r * nc + c, r * nc + c - 1);
if (c + 1 < nc && grid[r][c+1] == '1') uf.unite(r * nc + c, r * nc + c + 1);
}
}
}
return uf.getCount();
}
};