题意描述:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
思路:定义一个二维数组dp[i][j],表示到(i,j)坐标有多少种走法。
dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1],所以dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
初始化:dp[i][0] = 1; dp[0][j] = 1;
完整C++代码如下:
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m, vector<int> (n, 0));
for(int i = 0; i < m; i++) dp[i][0] = 1;
for(int j = 0; j < n; j++) dp[0][j] = 1;
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};