目标检测评估分析和开源工具介绍(MAP)

论文合集详解

MAP评价指标论文(工具介绍)下载链接

MAP评价指标工具(代码)下载地址

目录

提出目的和方法 

提出目的

提出方法

标注工具

不同数据集的标注格式

IOU表示方法

TP,FP以及FN

平均精确率计算

N个点插值

所有点的插值

平均召回率(Average Recall)

实验案例

基于AP和AR的最常用指标

视频检测评价指标


提出目的和方法 

提出目的

        近期,在竞赛和挑战中,监督对象检测的卓越成果通常与特定的度量标准和数据集相关联。在不同背景下应用这些方法的评估增加了对标注数据集的需求。标注工具表示对象在不同格式中的位置和大小,导致对这种表示缺乏共识。这种情况常常使对象检测方法之间的比较变得复杂。

提出方法

        本研究沿以下几个方面缓解了这一问题:

(i)提供了有关对象检测竞赛中使用的最相关评估方法的概述,突出了它们的特性、差异和优势;

(ii)审视了使用最广泛的标注格式,展示了不同实现如何影响评估结果;

(iii) 提供了一种新颖的开源工具包,支持不同的标注格式和 15 种性能指标,使研究人员更容易评估其检测算法在大多数已知数据集上的表现。此外,本研究还提出了一种新指标,也包含在该工具包中,用于评估视频中的对象检测,基于真实值与检测到的边界框之间的时空重叠。。

标注工具

不同数据集的标注格式

        由于每个数据集使用特定格式进行标注,因此各工作倾向于采用提供的评估工具来评估其性能。因此,结果依赖于与使用的数据集相关的特定指标实现。例如,PASCAL VOC 数据集采用 PASCAL VOC 注释格式,该格式提供了一个实现 AP mAP(交并比 IOU=0.50)的 MATLAB 代码。这往往限制了使用其他指标来报告该特定数据集的结果。表 2 列出了流行的对象检测方法及其相关的数据集,以及用于报告结果的 14 种不同指标,即:AP@[.5:.05:.95]AP@.50AP@.75APsAPMAPLAR1AR10AR100ARsARMARLmAPIOU=.50)和 AP

        由于评估指标与特定的注释格式直接相关,几乎所有工作都仅报告用于基准数据集的指标结果。例如,当使用 PASCAL VOC 数据集时,报告的 mAPIOU=.50)。同时,AP@[.5:.05:.95] 用于报告 COCO 数据集的结果。如果某项工作使用 COCO 数据集训练模型并希望使用 PASCAL VOC 工具评估其结果,则需要将 COCO JSON 格式的真实值转换为 PASCAL VOC XML 格式。这种情况使得跨数据集评估的使用变得不太常见,而这种评估在对象检测文献中已变得相当稀有。

IOU表示方法

TP,FP以及FN

平均精确率计算

N个点插值

所有点的插值

平均召回率(Average Recall

实验案例

基于APAR的最常用指标

 IOU 阈值为 0.5 APAP指标广泛用于评估 PASCAL VOC 数据集中的检测。官方实现位于 MATLAB 中,并可在 PASCAL VOC 工具包中获得。它通过计算精度 × 召回率曲线下的面积来单独测量每个类别的 AP,如公式 (9) 所示。为了将检测分类为 TP FPIOU 阈值设置为 t=0.5t=0.5

 IOU 阈值为 0.5 mAP该指标也由 PASCAL VOC 数据集使用,并且在其 MATLAB 工具包中可用。它的计算方法与 IOU t=0.5t=0.5 的 AP 相同,但各个类别的结果会根据公式 (13) 进行平均。

AP@.5 AP@.75这两个指标评估精度 × 召回率曲线的方法不同于 PASCAL VOC 指标。在此方法中,插值在 N=101N=101 个回召点上进行,如公式 (11) 所示。然后,将每个类别的计算结果相加并按类别数量进行划分,如公式 (13) 所示。

AP@.5 AP@.75 之间唯一的区别在于应用的 IOU 阈值。AP@.5 使用 t=0.5t=0.5,而 AP@.75 则应用 t=0.75t=0.75。这两个指标通常用于在 COCO 数据集上报告检测,并在其官方评估工具中获得。

AP@[.5:.05:.95]该指标通过计算在 10 个不同 IOU 阈值下的 APt=[0.5,0.55,…,0.95]t=[0.5,0.55,…,0.95])来扩展 AP@.5 AP@.75 指标,并将所有结果的平均值进行汇总。

APSAPM​ 和 APL

这三个指标,也称为跨尺度的 APAP Across Scales),考虑了真实目标的面积,具体如下:

APS APS ​ 仅评估小型真实目标(面积 < 32² 像素);
APM APM ​ 仅评估中型真实目标( 32² < 面积 < 96² 像素);
APL APL ​ 仅评估大型真实目标(面积 > 96² 像素)。

在评估特定大小的对象时,其他大小的对象(真实目标和预测目标)不会被纳入评估。这一指标也是 COCO 评估数据集的一部分。

AR1​AR10​ 和 AR100​这些 AR 变体应用公式 (14),限制每张图像的检测数量,即它们计算在每张图像上给定固定数量检测的召回率(AR),并在所有类别和 IOU 上进行平均。用于测量召回值的 IOU AP@[.5:.95] 中的 IOU 相同。

其他指标

其他一些热门指标也被提出用于评估目标检测。开放图像检测指标(Open Images Object Detection Metric)与 mAPIOU = 0.5)相似,专门设计用于处理开放图像数据集中特殊的真实标注。该数据集将五个或更多同类物体分组为单一标注,如一组花或一群人。该指标会忽略重叠的检测,如果某一检测与被标记为“组”的真实框重叠,以该组的交集区域与真实框的面积进行比率计算,这样就不会惩罚与一组非常接近的真实目标的检测。

位置召回-精度(LRP)误差是一种新指标,旨在考虑检测到的边界框定位的准确性,并公平地评估在 AP 无法区分非常不同的精度 × 召回曲线的情况下的表现。

指标之间的比较

在实践中,COCO AP@[.5:.05:.95] PASCAL mAP 指标是最常用的基准。由于 COCO AP@[.5:.05:.95] 受不同 IOU 的影响,因此无法评估检测器在更具限制性或不那么限制性 IOU 下的有效性。对真实标注与检测边界框的相似性进行更严格的评估时,应使用 AP@.75

在物体的尺寸相对不同的情况下,应采用 AP 指标。通过这样做,可以比较具有相似尺寸的物体。插值方法试图消除 Pr(τ) 和 Rc(τ) 行为的非单调性。在 N 点插值中,更大的 N 得到更好的 AUC 近似。因此,COCO AP 指标提供的 101 点插值方法能够比 11 点插值方法提供更好的 AUC 近似。另一方面,PASCAL VOC 则使用全点插值,这是更好的 AUC 近似,适用于检测器需要检测到至少一个目标的情况。

视频检测评价指标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值